화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.1, 112-117, February, 2017
알킬렌디아미노알킬-비스-포스폰산과 비스-디메틸아미노메틸 포스핀산으로 처리된 중질섬유판의 연소가스 발생
Combustion Gas-emission of Medium Density Fibreboard (MDF) Treated with Alkylenediaminialkyl-bis-phosphonic Acids and Bis-(dimethylaminomethyl) Phosphinic Acid
E-mail:
초록
이 연구에서는 피페라지노메틸-비스-포스폰산(PIPEABP), 메틸피페라지노메틸-비스-포스폰산(MPIPEABP), N,N-디메틸렌디아미노메틸-비스-포스폰산(MDEDAP) 그리고 비스-디메틸아미노메틸 포스핀산(DMDAP)의 화학 첨가제로 처리된 중질섬유판(MDF)의 연소가스 발생을 시험하였다. 15 wt%의 인-질소산류 첨가제 수용액으로 중질섬유판에 붓으로 3회 칠하여 실온에서 건조시킨 후, 콘칼로리미터(Conecalorimeter, ISO 5660-1, 2)를 이용하여 연소가스의 발생을 시험하였다. 그 결과, 인-질소산류 첨가제로 처리한 시험편의 최대연기발생률(SPRpeak)은 무처리 시험편에 비교하여 18.5~41.5%로 낮게 나타내었다. 그러나 인-질소산류 첨가제로 처리한 시험편에 대한 최대일산화탄소 생성(COpeak), (6.7~24.2)%은 공시험편보다 높게 나타났다. 또한 최대이산화탄소 발생(CO2peak), (4.2~24.4)%은 공시험편보다 낮게 나타났다. 반면에 O2의 최대결핍률은 사람에게 치명적일 수 있는 수준인 15%보다 훨씬 높으므로 그로 인한 위험성은 피할 수 있었다. 결론적으로 MDF에 인-질소산류로 처리한 시험편은 부분적으로 연소성이 억제되었다. 그러나 일산화탄소의 감소에는 부정적인 영향을 미쳤다.
This study demonstrated the emission of combustion gases of medium density fibreboard (MDF)s coated with piperazinomethyl-bis-phosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), N,N-dimethylethylenediaminomethyl-bis-phosphonic acid (MDEDAP), or bis-(dimethylaminomethyl) phosphinic acid (DMDAP). Each MDFs were coated in three times with a brush with 15 wt% aqueous solution of the phosphorus-nitrogen acid additives. After the specimens were dried at room temperature, the emission of combustion gases was tested using a cone calorimeter (ISO 5660-1, 2). The peak smoke production rate (SPRpeak) of the specimens coated with phosphorus-nitrogen acids was 18.5 to 41.5%, which is lower than that of using the virgin plate. However, the production of peak carbon monoxide (COpeak) was 6.7 to 24.2% higher than that of using the virgin plate. Also, the peak carbon dioxide (CO2peak) was 4.2 to 24.4% lower than that of using virgin plate. While the peak oxygen depletion rate was much higher than the level of 15%, which can be fatal to humans and the resulting risk could thus be eliminated. Overall, the combustibility of coated specimens was partially suppressed, but showed a negative effect on the reduction of carbon monoxide.
  1. White RH, Dietenberger MA, Fire safety of wood construction. In: Ross RJ (ed.), Wood Handbook: Wood as an Engineering Material, Ch. 18, USDA (2010).
  2. Ernst A, Zibrak JD, N. Engl. J. Med., 339, 1603 (1998)
  3. Von Berg R, J. Appl. Toxicol., 19, 379 (1999)
  4. King BG, J. Ind. Hyg. Toxicol., 31, 365 (1949)
  5. Luft UC, Aviation Physiology: The Effects of Altitude in Handbook of Physiology, 1099-1145, American Physiology Society, Washington DC, USA (1965).
  6. Babrauskas V, Development of the cone calorimeter - a bench-scale heat release rate apparatus based on oxygen consumption. In: Grayson SJ, Smith DA (eds.) New Technology to Reduce Fire Losses and Costs, pp. 78-87, Elsevier Appied Science Publisher, London, UK (1986).
  7. Hirschler MM, ACS Symp. Ser., 797, 293 (2001)
  8. Chung Y, Jin E, J. Korean Oil Chem. Soc., 30, 1 (2013)
  9. Hwang HS, Park I, Lee IK, Choi WJ, Lee SI, Lee JY, Appl. Chem. Eng., 23(4), 383 (2012)
  10. Grexa O, Horvathova E, Besinova O, Lehocky P, Polym. Degrad. Stabil., 64, 529 (1999)
  11. Liodakis S, Vorisis D, Agiovlasitis IP, Thermochim. Acta, 444(2), 157 (2006)
  12. Samyn F, Bourbigot S, Duquesne S, Delobel R, Thermochim. Acta, 456(2), 134 (2007)
  13. Park M, Chung Y, Fire Sci. Eng., 27, 28 (2014)
  14. ISO 5660-1, Reaction to fire tests - Heat release, smoke production and mass loss rate. Part 1: Heat release rate (cone calorimeter method), Geneva (2002).
  15. ISO 5660-2, Reaction to fire tests - Heat release, smoke production and mass loss rate. Part 2: Smoke production rate (dynamic measurement), Geneva (2002).
  16. Bergman R, Drying and control of moisture content and dimensional changes, In: Ross RJ (ed.), Wood Handbook-Wood as an Engineering Material, Ch. 13, USDA (2010).
  17. Babrauskas V, SFPE Handbook of Fire Protection Engineering, 4th Ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  18. Spearpoint MJ, Quintiere JG, Combust. Flame, 123(3), 308 (2000)
  19. Ishihara S, Wood Res. Tech. Notes, 16, 49 (1981)
  20. Hirscher MM, Polymer, 25, 405 (1984)
  21. Zhang J, Jiang DD, Wilkie CA, Polym. Degrad. Stabil., 91, 298 (2006)
  22. Kimmerle G, J. Combust. Toxicol., 1, 4 (1974)
  23. Mourituz AP, Mathys Z, Gibson AG, Compos. Pt. A-Appl. Sci. Manuf., 38, 1040 (2005)
  24. OHSA, Carbon Monoxide Fact Sheet, U.S. Department of Labor, Occupational Safety and Health Administration (2002).
  25. OHSA, Carbon Dioxide, Toxicological Review of Selected Chemicals. OSHA’s Comments from January 19, 1989. Final Rule on Air Contaminants Project (2005).
  26. MSHA, Carbon Monoxide, MSHA’s Occupational Illness and Injury Prevention Program Health Topic, U.S. Department of Labor (2015).