화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.46, 44-48, February, 2017
Development of a continuous L-lysine bioconversion system for cadaverine production
E-mail:
Cadaverine, a five carbon diamine (1,5-diaminopentane), plays a role as a building block of polyamides and it can be made by fermentation or direct bioconversion. To improve its production by increasing reusability of immobilized enzyme and avoid separation of enzyme in bioconversion, a continuous L-lysine bioconversion process for cadaverine production has been developed. Various divalent cations, alginate concentrations, cell density with alginate and flow rate of feed were examined to maximize the lysine decarboxylase activity of the whole-cell immobilized beads. Under the selected conditions,123 h of continuous cadaverine production has been performed and 5.5 L of 819 mM cadaverine were produced with 14 mL reactor resulting in 466.5 g of cadaverine. Cadaverine production was possible with small volume reactor maintaining relatively high concentration of substrate.
  1. Jang YS, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY, Biotechnol. Bioeng., 109(10), 2437 (2012)
  2. Kamm B, Kamm M, Chem. Ing. Tech., 79(5), 592 (2007)
  3. Menrad K, Klein A, Kurka S, Biofuels Bioprod. Bioref. Biofpr, 3, 384 (2009)
  4. Becker J, Lange A, Fabarius J, Wittmann C, Curr. Opin. Biotechnol., 36, 168 (2015)
  5. Zeng AP, Biebl H, Adv. Biochem. Eng. Biotechnol., 74, 239 (2002)
  6. Shin JH, Kim HU, Kim DI, Lee SY, Biotechnol. Adv., 31, 925 (2013)
  7. Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, von Abendroth G, Zelder O, Wittmann C, Metab. Eng., 25, 113 (2014)
  8. Ikeda N, Miyamoto M, Adachi N, Nakano M, Tanaka T, Kondo A, AMB Express, 3, 67 (2013)
  9. Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A, Appl. Microbiol. Biotechnol., 82(1), 115 (2009)
  10. Qian ZG, Xia XX, Lee SY, Biotechnol. Bioeng., 108(1), 93 (2011)
  11. Mimitsuka T, Sawai H, Hatsu M, Yamada K, Biosci. Biotechnol. Biochem., 71, 2130 (2007)
  12. Lessmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais JC, Wendisch VF, Appl. Microbiol. Biotechnol., 99(23), 10163 (2015)
  13. Buschke N, Becker J, Schafer R, Kiefer P, Biedendieck R, Wittmann C, Biotechnol. J., 8, 557 (2013)
  14. Oh YH, Kang KH, Kwon MJ, Choi JW, Joo JC, Lee SH, Yang YH, Song BK, Kim IK, Yoon KH, Park K, Park SJ, J. Ind. Microbiol. Biotechnol., 42, 1481 (2015)
  15. Kim HJ, Kim YH, Shin JH, Bhatia SK, Sathiyanarayanan G, Seo HM, Choi KY, Yang YH, Park K, J. Microbiol. Biotechnol., 25, 1108 (2015)
  16. Ma WC, Cao WJ, Zhang H, Chen KQ, Li Y, Ouyang PK, Biotechnol. Lett., 37(4), 799 (2015)
  17. Bhatia SK, Kim YH, Kim HJ, Seo HM, Kim JH, Song HS, Sathiyanar-ayanan G, Park SH, Park K, Yang YH, Bioprocess. Biosyst. Eng., 38, 2315 (2015)
  18. Friedl A, Qureshi N, Maddox IS, Biotechnol. Bioeng., 38, 518 (1991)
  19. Nakasaki K, Murai T, Akiyama T, Biotechnol. Bioeng., 33, 1317 (1989)
  20. Duarte JC, Rodrigues JA, Moran PJ, Valenca GP, Nunhez JR, AMB Express, 3, 31 (2013)
  21. Najafpour G, Younesi H, Ismail KSK, Bioresour. Technol., 92(3), 251 (2004)
  22. Barros MR, Cabral JM, Novais JM, Biotechnol. Bioeng., 29, 1097 (1987)
  23. Park MC, Lim JS, Kim JC, Park SW, Kim SW, Biotechnol. Lett., 27, 127 (2005)
  24. Lorenzoni ASG, Aydos LF, Klein MP, Ayub MAZ, Rodrigues RC, Hertz PF, J. Mol. Catal. B-Enzym., 111, 51 (2015)
  25. Agulhon P, Markova V, Robitzer M, Quignard F, Mineva T, Biomacromolecules, 13(6), 1899 (2012)
  26. Morch YA, Donati I, Strand BL, Skjak-Braek G, Biomacromolecules, 7(5), 1471 (2006)
  27. Mahajan R, Gupta VK, Sharma J, Indian J. Pharm. Sci., 72, 223 (2010)
  28. Bajpai SK, Sharma S, React. Funct. Polym., 59(2), 129 (2004)
  29. Kim YH, Kim HJ, Shin JH, Bhatia SK, Seo HM, Kim YG, Lee YK, Yang YH, Park K, J. Mol. Catal. B-Enzym., 115, 151 (2015)