화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.46, 130-138, February, 2017
Structural-thermochromic relationship of polydiacetylene (PDA)/polyvinylpyrrolidone (PVP) nanocomposites: Effects of PDA side chain length and PVP molecular weight
E-mail:
Reversible thermochromic polydiacetylene (PDA)/polyvinylpyrrolidone (PVP) nanocomposites are prepared by using 6 diacetylene (DA) monomers. The use of relatively low molecular weight (MW) PVP provides the nanocomposites with reversible thermochromism. The shortening of PDA alkyl tail causes the decrease of color-transition temperature, ranging from 75 to 85 °C. The shortening of alkyl segment adjacent to PDA carboxylic head group, however, does not provide the same trend. The nanocomposites constituting PDAs with 8, 6 and 4 methylene units exhibits color-transition at about the same temperature. The increase of PVP MW reduces the color-transition temperature and also affects thermochromic reversibilty of the PDA/PVP nanocomposites.
  1. Shin MJ, Kim JD, Langmuir, 32(3), 882 (2016)
  2. Samyn P, Shroff K, Prucker O, Ruhe J, Biesalski M, Colloids Surf. A: Physicochem. Eng. Asp., 441, 242 (2014)
  3. Rougeau L, Picq D, Rastello M, Frantz Y, Tetrahedron, 64, 9430 (2008)
  4. Shin MJ, Kim JD, J. Ind. Eng. Chem., 35, 211 (2016)
  5. Xu YY, Li JG, Hu WL, Zou G, Zhang QJ, J. Colloid Interface Sci., 400, 116 (2013)
  6. Pattanatornchai T, Charoenthai N, Wacharasindhu S, Sukwattanasinitt M, Traiphol R, J. Colloid Interface Sci., 391, 45 (2013)
  7. Lu S, Jia C, Duan X, Zhang X, Luo F, Han Y, Huang H, Colloids Surf. A: Physicochem. Eng. Asp., 443, 488 (2014)
  8. Charoenthai N, Pattanatornchai T, Wacharasindhu S, Sukwattanasinitt M, Traiphol R, J. Colloid Interface Sci., 360(2), 565 (2011)
  9. Su YL, React. Funct. Polym., 66(9), 967 (2006)
  10. Yang JE, Lee S, Bhak G, Lee M, Jeong DH, Jung S, Paik SR, Sens. Actuators B-Chem., 227, 313 (2016)
  11. Seo D, Kim J, Adv. Funct. Mater., 20(9), 1397 (2010)
  12. Chanakul A, Traiphol N, Faisadcha K, Traiphol R, J. Colloid Interface Sci., 418, 43 (2014)
  13. Shin MJ, Byun DH, Kim JD, J. Ind. Eng. Chem., 23, 279 (2015)
  14. Song S, Ha K, Guk K, Hwang SG, Choi JM, Kang T, Bae P, Jung J, Lim EK, RSC Adv., 6, 48566 (2016)
  15. de Oliveira TV, Soares NDFF, Coimbra JSDR, de Andrade NJ, Moura LG, Medeiros EAA, de Medeiros HS, Sens. Actuators B-Chem., 221, 653 (2015)
  16. Kim JP, Kwon IJ, Sim SJ, Biosens. Bioelectron., 26, 4823 (2011)
  17. Wang C, Ma Z, Su Z, Sens. Actuators B-Chem., 113, 510 (2006)
  18. Kim KW, Choi H, Lee GS, Ahn DJ, Oh MK, Colloids Surf. B: Biointerfaces, 66, 213 (2008)
  19. Jung YK, Kim TW, Kim J, Kim JM, Park HG, Adv. Funct. Mater., 18(5), 701 (2008)
  20. Xia Y, Deng J, Jiang L, Sens. Actuators B-Chem., 145, 713 (2010)
  21. Kang DH, Jung HS, Lee J, Seo S, Kim J, Kim K, Suh KY, Langmuir, 28(19), 7551 (2012)
  22. Jung YK, Park HG, Biosens. Bioelectron., 72, 127 (2015)
  23. Zhang L, Yuan YZ, Tian XH, Sun JY, Chin. Chem. Lett., 26, 1133 (2015)
  24. Wacharasindhu S, Montha S, Boonyiseng J, Potisatityuenyong A, Phollookin C, Tumcharern G, Sukwattanasinitt M, Macromolecules, 43(2), 716 (2010)
  25. Kim JM, Lee JS, Choi H, Sohn D, Ahn DJ, Macromolecules, 38(22), 9366 (2005)
  26. van den Heuvel M, Lowik DWPM, van Hest JCM, Biomacromolecules, 11(6), 1676 (2010)
  27. Park H, Lee JS, Choi H, Ahn DJ, Kim JM, Adv. Funct. Mater., 17(17), 3447 (2007)
  28. Lee S, Lee J, Kim HN, Kim MH, Yoon J, Sens. Actuators B-Chem., 173, 419 (2012)
  29. Ampornpun S, Montha S, Tumcharern G, Vchirawongkwin V, Sukwattanasinitt M, Wacharasindhu S, Macromolecules, 45(22), 9038 (2012)
  30. Pang JB, Yang L, McCaughey BF, Peng HS, Ashbaugh HS, Brinker CJ, Lu YF, J. Phys. Chem. B, 110(14), 7221 (2006)
  31. Yu L, Hsu SL, Macromolecules, 45(1), 420 (2012)
  32. Huang X, Jiang SG, Liu MH, J. Phys. Chem. B, 109(1), 114 (2005)
  33. Chanakul A, Traiphol N, Traiphol R, J. Colloid Interface Sci., 389, 106 (2013)
  34. Traiphol N, Faisadcha K, Potaib R, Traiphol R, J. Colloid Interface Sci., 439, 105 (2015)
  35. Traiphol N, Rungruangviriya N, Potai R, Traiphol R, J. Colloid Interface Sci., 356(2), 481 (2011)
  36. Toommee S, Traiphol R, Traiphol N, Colloids Surf. A: Physicochem. Eng. Asp., 468, 252 (2015)
  37. Chanakul A, Traiphol R, Traiphol N, Colloids Surf. A: Physicochem. Eng. Asp., 489, 9 (2016)
  38. Kamphan A, Charoenthai N, Traiphol R, Colloids Surf. A: Physicochem. Eng. Asp., 489, 103 (2016)
  39. Guo J, Zhu L, Jiang M, Chen DY, Langmuir, 27(11), 6651 (2011)
  40. Gu Y, Cao WQ, Zhu L, Chen DY, Jiang M, Macromolecules, 41(7), 2299 (2008)
  41. Balakrishnan S, Lee S, Kim JM, J. Mater. Chem., 20, 2302 (2010)
  42. Lee J, Pyo M, Lee SH, Kim J, Ra M, Kim WY, Park BJ, Lee CW, Kim JM, Nat. Commun., 5 (2014)
  43. Wu S, Shi F, Zhang QJ, Bubeck C, Macromolecules, 42(12), 4110 (2009)
  44. Kootery KP, Jiang H, Kolusheva S, Vinod TP, Ritenberg M, Zeiri L, Volinsky R, Malferrari D, Galletti P, Tagliavini E, Jelinek R, ACS Appl. Mater. Interfaces, 6, 8613 (2014)
  45. Kamphan A, Traiphol N, Traiphol R, Colloids Surf. A: Physicochem. Eng. Asp., 497, 370 (2016)
  46. Pattanatornchai T, Charoenthai N, Traiphol R, J. Colloid Interface Sci., 432, 176 (2014)
  47. Gunther H, NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, John Wiley & Sons, 2013.
  48. Callaghan PT, Principles of Nuclear Magnetic Resonance Microscopy, Oxford University Press on Demand, 1993.
  49. James TL, Fundamentals of NMR. Online Textbook, Department of Pharmaceutical Chemistry, University of California, San Francisco, 1998, pp. 1.
  50. Kim BJ, Fredrickson GH, Kramer EJ, Macromolecules, 41(2), 436 (2008)
  51. Park K, Kim JH, Nam YS, Lee S, Nam HY, Kim K, Park JH, Kim IS, Choi K, Kim SY, Kwon IC, J. Control. Release, 122, 305 (2007)
  52. Discher DE, Eisenberg A, Science, 297, 967 (2002)