Journal of Industrial and Engineering Chemistry, Vol.46, 298-303, February, 2017
Vanadium nitride nanofiber membrane as a highly stable support for Pt-catalyzed oxygen reduction reaction
E-mail:,
Carbon-based nanomaterials are frequently used as a support for proton exchange membrane fuel cell (PEMFC) catalysts, due to their high electrical conductivity and large surface area; however, the limited long-term stability of carbon-based catalysts under PEMFC operation causes huge problems in practical applications. Here we report the use of vanadium nitride (VN) nanofiber membrane as a highly durable catalyst support for oxygen reduction reaction (ORR). Nanofibrous VN was prepared using a simple electrospinning process, followed by sequential heat treatments in air and NH3. The NH3 treatment temperature affected the crystallinity as well as the crystal size of VN, which ultimately affected the catalytic ORR activity of Pt-decorated catalysts. The optimized Pt/VN catalysts exhibited excellent ORR activity and durability in acid electrolyte. Much higher durability of Pt/VN than Pt/C was verified by chrono-amperometry analysis. Density functional theory (DFT) calculations provided further evidence of the strong interaction of Pt and VN, which contributed to the high stability of the catalyst.
- Dong Y, Li J, Chem. Commun., 51, 572 (2015)
- Yuan W, Cheng Y, Shen PK, J. Mater. Chem. A, 3, 1961 (2015)
- Wu MS, Ceng ZZ, Electrochim. Acta, 191, 895 (2016)
- Patel PP, Datta MK, Jampani PH, Hong D, Poston JA, Manivannan A, Kumta PN, J. Power Sources, 293, 437 (2015)
- Nam JH, Kaviany M, Int. J. Heat Mass Transf., 46(24), 4595 (2003)
- de Lima SM, da Silva AM, da Costa LOO, Graham UM, Jacobs G, Davis BH, Mottos LV, Noronha FB, J. Catal., 269, 268 (2009)
- Avasarala B, Haldar P, Electrochim. Acta, 55(28), 9024 (2010)
- Mannling HD, Patil DS, Moto K, Jilek M, Veprek S, Surf. Coat. Technol., 146, 263 (2001)
- Balogun MS, Qiu W, Wang W, Fang P, Lu X, Tong Y, J. Mater. Chem. A, 3, 1364 (2015)
- Yang S, Kim J, Tak YJ, Soon A, Lee H, Angew. Chem.-Int. Edit., 55, 2058 (2016)
- Zho J, Liu B, Xu S, Yang J, Lu Y, J. Alloy. Compd., 651, 785 (2015)
- Salimi A, Banks CE, Comton RG, Phys. Chem. Chem. Phys., 5, 3988 (2003)
- Sun G, Kurti J, Rajczy P, Kertesz M, Hafner J, Kresse G, J. Mol. Struct., 624, 37 (2003)
- Markovic NM, Gasteiger HA, Grgur BN, Ross PN, J. Electroanal. Chem., 467(1-2), 157 (1999)
- Yin ZP, Kutepov A, Kotliar G, Phys. Rev. X, 3, 021011 (2013)
- Huang S, Zhou L, Li MC, Wu Q, Kojima Y, Zhou D, Materials, 9, 523 (2016)
- Thavasie V, Singh G, Raamakrishna S, Energy Environ. Sci., 1, 205 (2008)
- McFarlane NL, Wagner NJ, Kaler EW, Lynch ML, Langmuir, 26(17), 13823 (2010)
- Caicedo JC, Zambrano G, Aperador W, Escobar-Alarcon L, Camps E, Appl. Surf. Sci., 258(1), 312 (2011)
- Ohnuma A, Abe R, Shibayama T, Ohtani B, Chem. Commun., 3491 (2007)
- Moutos FT, Glass KA, Compton SA, Ross AK, Gersbach CA, Guilak F, Estes BT, PNAS, E4513 (2016)
- Shinagawa T, Esparza ATG, Takanabe K, Sci. Rep., 5, 13801 (2015)
- Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM, J. Phys. Chem. B, 106(46), 11970 (2002)
- Liu XY, Liu MH, Luo YC, Mou CY, Lin SD, Cheng HK, Chen JM, Lee JF, Lin TS, J. Am. Chem. Soc., 134(24), 10251 (2012)
- Kim H, Cho MK, Kwon JA, Jeong YH, Lee KJ, Kim NY, Kim MJ, Yoo SJ, Jang JH, Kim HJ, Nam SW, Lim DH, Cho EA, Lee KY, Kim JY, Nanoscale, 7, 18429 (2015)
- Kou R, Shao YY, Mei DH, Nie ZM, Wang DH, Wang CM, Viswanathan VV, Park S, Aksay IA, Lin YH, Wang Y, Liu J, J. Am. Chem. Soc., 133(8), 2541 (2011)
- Forster GD, Rabilloud F, Calvo F, Phys. Rev. B, 91, 245433 (2015)