화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.46, 356-363, February, 2017
Selective hydrocracking of pyrolysis fuel oil into benzene, toluene and xylene over CoMo/beta zeolite catalyst
E-mail:
Cobalt promoted Mo/β (Beta zeolite) catalysts were prepared with different metallic loadings (0.5-1.5) by a co-impregnation method. The catalytic activities of the synthesized catalysts were investigated for the selective hydrocracking of tetralin and pyrolysis fuel oil (PFO) into mono-aromatic hydrocarbons (MAH) such as benzene, toluene and xylene (BTX) in a fixed-bed reactor system. Prior to using the CoMo/β catalyst for crude PFO hydrocracking, different reaction parameters (including metallic loading, temperature, H2 pressure, and LHSV) were investigated for the hydrocracking of a model feed, tetralin, to determine the best conditions for maximum BTX yield. The CoMo(0.5)/β catalyst with a Co/Mo ratio of 0.5 produced the highest MAH yield of 62.6% at 99.5% conversion of tetralin, continuously for 140 h of reaction time without any deactivation. Furthermore, the CoMo(0.5)/β catalyst was found to be superior among the tested CoMo/β catalysts for hydrocracking real feed PFO, and it produced a maximum MAH yield of 54.8% at 99.1% conversion of PFO. The synthesized catalysts were characterized using different characterization techniques, including BET, NH3-TPD, SEM-EDS and ICP, to evaluate their physiochemical properties and determine the active sites present in the catalysts.
  1. Kaufmann TG, Kaldor A, Stuntz GF, Kerby MC, Ansell LL, Catal. Today, 62(1), 77 (2000)
  2. Santana RC, Do PT, Santikunaporn M, Alvarez WE, Taylor JD, Sughrue EL, Resasco DE, Fuel, 85(5-6), 643 (2006)
  3. Vartivarian D, Andrawis H, Oil Gas J., 104(6), 52 (2006)
  4. Speight JG, Upgrading and refining of natural bitumen and heavy oil, Coal, Oil Shale, Natural Bitumen, Heavy Oil and Peat, vol. II(2009) . www.eolss.net/ Sample-Chapters/C08/E3-04-05-06.pdf.
  5. Sahu R, Song BJ, Im JS, Jeon YP, Lee CW, J. Ind. Eng. Chem., 27, 12 (2015)
  6. Upare DP, Rao N, Yoon S, Lee CW, Res. Chem. Intermed., 37, 1293 (2011)
  7. Kim HY, Monthly Energy Statistics, Korea Energy Economics Institute, 2015.
  8. Jung MJ, Jung JY, Lee D, Lee YS, J. Ind. Eng. Chem., 22, 70 (2015)
  9. Kim JG, Liu F, Lee CW, Lee YS, Im JS, Solid State Sci., 34, 38 (2014)
  10. Oh YS, Park SW, Lee SJ, US20140346085 A1 (2014).
  11. Kim JG, Kim JH, Song BJ, Lee CW, Im JS, J. Ind. Eng. Chem., 36, 293 (2016)
  12. Sharma A, Murugan S, Fuel, 108, 699 (2013)
  13. Wongkhorsub C, Chindaprasert N, Energy Power Eng., 5, 350 (2013)
  14. Wu Z, Zhou Z, Zhou B, US 8142645 B2 (2012).
  15. Johnson AR, Narayanan S, Woebcke HH, US 4765883 A (1988).
  16. Choi S, Kim DW, Kim GR, Kim HC, Kim YS, Koh JH, Koh JS, Lee S, Lee SW, Oh SH, WO2012053853 A2 (2012).
  17. The BTX Chain: Benzene, Toluene, Xylene. Chapter 4 of the DOE’s Office of Energy Efficiency and Renewable Energy (EERE) report entitled Energy and Environmental Profile of the U.S. Chemical Industry May 2000.
  18. Miyake K, Hirota Y, Ono K, Uchida Y, Nishiyama N, Chem. Select, 1, 967 (2016)
  19. The Global Aromatics Market 2016 with 10 Year Forecasts-Research and Markets, May 26, 2016.
  20. Lidback A, IHS Aromatics Update, Presented at the PEMEX Petrochemicals Forum, Mexico City, 2012.
  21. Al-Khattaf S, Ali SA, Aitani AM, Zilkova N, Kubicka D, Cejka J, Catal. Rev.-Sci. Eng., 56(4), 333 (2014)
  22. Galadima A, Muraza O, Fuel, 181, 618 (2016)
  23. Aromatics Online.Aromatics in everyday life, www.aromaticsonline.eu/applications.
  24. Lee J, Choi Y, Shin J, Lee JK, Catal. Today, 265, 144 (2016)
  25. Choi Y, Lee J, Shin J, Lee S, Kim D, Lee JK, Appl. Catal. A: Gen., 492, 140 (2015)
  26. Kim Y, Yun G, Lee Y, Catal. Commun., 45, 133 (2014)
  27. Park JI, Ali SA, Alhooshani K, Azizi N, Miyawaki J, Kim T, Lee Y, Kim HS, Yoon SH, Mochida I, J. Ind. Eng. Chem., 19(2), 627 (2013)
  28. Owusu-Boakye A, Dalai AK, Ferdous D, Energy Fuels, 19(5), 1763 (2005)
  29. Ishihara A, Itoh T, Nasu H, Hashimoto T, Doi T, Fuel Process. Technol., 116, 222 (2013)
  30. Maesen TLM, Calero S, Schenk M, Smit B, J. Catal., 221(1), 241 (2004)
  31. Upare DP, Song B, Lee CW, J. Nanomater., Article no.6., 2013 (2010)
  32. Upare DP, Park S, Kim MS, Kim J, Lee D, Lee J, Chang H, Choi W, Choi S, Jeon YP, Park YK, Lee CW, J. Ind. Eng. Chem., 35, 99 (2016)
  33. Cid R, Llambias FJ, Gonzalez M, Agudo AL, Catal. Lett., 24(1-2), 147 (1994)
  34. Esquivel D, Cruz-Cabeza AJ, Jimenez-Sanchidrian C, Romero-Salguero FJ, Microporous Mesoporous Mater., 179, 30 (2013)
  35. Liu MC, Kong LB, Lu C, Ma XJ, Li XM, Luo YC, Kang L, J. Mater. Chem., 1, 1380 (2013)
  36. Veen JAR, Gerkema E, van Der Kraan AM, Hendriks PAJM, Beens H, J. Catal., 133, 112 (1992)
  37. Al-Zeghayer YS, Sunderland P, Al-Masry W, Al-Mubaddel F, Ibrahim AA, Bhartiya BK, Jibril BY, Appl. Catal. A: Gen., 282(1-2), 163 (2005)
  38. Rana MS, Ancheyta J, Maity SK, Rayo P, Catal. Today, 130(2-4), 411 (2008)
  39. Baudon A, Lemberton JL, Guisnet M, Marchal N, Mignard S, Catal. Lett., 36(3-4), 245 (1996)
  40. Roy C, US5099086A (1992).