화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.29, No.1, 1-7, February, 2017
Rheology and gel point of the enzymatic hydrolysis of urea in the presence of urease
E-mail:,
This study reports on the rheology of the gelation kinetics of raw chitosan (CTS) solutions (2% w/v) produced by enzymatic hydrolysis of urea at different urea concentrations (40, 50, 60, 80, and 100 mM) in the presence of urease at 1 U/mL. Viscoelastic parameters and pH values were evaluated during gelation process and the rheological properties of CTS hydrogels produced were monitored after 24 h at 37°C to simulate human body temperatures. pH measurements suggest that above some critical urea concentration (50 mM) the time required (tgel) to reach the critical pH gelation shows no dependence on urea concentration (tgel was ca. 70 minutes). Above 50 mM of urea concentration, CTS hydrogels exhibit an elastic modulus G' higher than the viscous modulus G'' with no frequency dependence characteristic of a gel behavior. Gelation kinetics analyzed by rheology suggest that the G' (i.e., structure) development depends on urea concentration during solution neutralization.
  1. Assaad E, Maire M, Lerouge S, Carbohydr. Polym., 130, 87 (2015)
  2. Baysal K, Aroguz AZ, Adiguzel Z, Baysal BM, Int. J. Biol. Macromol., 59, 342 (2013)
  3. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R, Eur. J. Pharm. Biopharm., 57, 19 (2004)
  4. Cairns P, Miles MJ, Morris VJ, Ridout MJ, Brownsey GJ, Winter WT, Carbohydr. Res., 235, 23 (1992)
  5. Chambon F, J. Rheol., 31, 683 (1987)
  6. Chang YH, Xiao L, Tang Q, J. Appl. Polym. Sci., 113(1), 400 (2009)
  7. Chenite A, Gori S, Shive M, Desrosiers E, Buschmann MD, Carbohydr. Polym., 64, 419 (2006)
  8. Fernandez-Saiz P, Ocio MJ, Lagaron JM, Biopolymers, 83, 577 (2006)
  9. Giri TK, Thakur A, Alexander A, Badwaik H, Tripathi DK, Acta Pharmacol. Sin. B, 2, 439 (2012)
  10. Hu G, Pojman JA, Scott SK, Wrobel MM, Taylor AF, J. Phys. Chem. B, 114(44), 14059 (2010)
  11. Jiang T, James R, Sangamesh G, Kumbar C, Laurencin CT, 2014, Chitosan as a biomaterial: Structure, properties, and applications in tissue engineering and drug delivery, In: Kumbar C, Laurencin CT, Deng M, eds., Natural and Synthetic Biomedical Polymers, Elsevier, 91-107.
  12. Kumirska J, Czerwicka M, Kaczynski Z, Bychowska A, Brzozowski K, Thoming J, Stepnowski P, Mar. Drugs, 8, 1567 (2010)
  13. Li XY, Kong XY, Wang XH, Shi S, Guo G, Luo F, Zhao X, Wei YQ, Qian ZY, Eur. J. Pharm. Biopharm., 75, 388 (2010)
  14. Merkovich EA, Carruette ML, Babak VG, Vikhoreva GA, Gal’braikh LS, Kim VE, Colloid J., 63, 350 (2001)
  15. Montembault A, Viton C, Domard A, Biomacromolecules, 6(2), 653 (2005)
  16. Ogawa K, Agric. Biol. Chem., 55, 2375 (1991)
  17. Osorio-Madrazo A, David L, Trombotto S, Lucas JM, Peniche-Covas C, Domard A, Biomacromolecules, 11(5), 1376 (2010)
  18. Sakai S, Khanmohammadi M, Khoshfetrat AB, Taya M, Carbohydr. Polym., 111, 404 (2014)
  19. Sarmento B, das Neves J, 2012, Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting, and Polymer Therapeutics, John Wiley & Sons Ltd., Chichester.
  20. Winter HH, J. Rheol., 30, 367 (1986)
  21. Wrobel MM, Bansagi T, Scott SK, Taylor AF, Bounds CO, Carranza A, Pojman JA, Biophys. J., 103, 610 (2012)