Korea-Australia Rheology Journal, Vol.29, No.1, 9-15, February, 2017
Non-Newtonian behavior observed via dynamic rheology for various particle types in energetic materials and simulant composites
E-mail:,
The rheological properties of polymer composites highly filled with different filler materials were examined using a stress-controlled rheometer with a parallel-plate configuration, for particle characterization of the filler materials in plastic (polymer) bonded explosive (PBX). Ethylene vinyl acetate (EVA) with dioctyl adipate (DOA) was used as the matrix phase, which was shown to exhibit Newtonian-like behavior. The dispersed phase consisted of one of two energetic materials, i.e., explosive cyclotrimethylene trinitramine (RDX) or cyclotetramethylene tetranitramine (HMX), or a simulant (Dechlorane) in a bimodal size distribution. Before the test, preshearing was conducted to identify the initial condition of each sample. All examined filled polymer specimens exhibited yield stress and shear-thinning behavior over the investigated frequency range. The complex viscosity dependence on the dynamic oscillation frequency was also fitted using an appropriate rheological model, suggesting the model parameters. Furthermore, the temperature dependency of the different filler particle types was determined for different filler volume fractions. These comparative studies revealed the influence of the particle characteristics on the rheological properties of the filled polymer.
- Bae WS, Kwon OJ, Kim BC, Chae DW, Korea-Aust. Rheol. J., 24(3), 221 (2012)
- Brodman BW, Devine MP, Schwartz S, J. Appl. Polym. Sci., 20, 2607 (1976)
- Dzuy NQ, Boger DV, J. Rheol., 27, 321 (1983)
- Farris RJ, Trans. Soc. Rheol., 12, 281 (1968)
- Genovese DB, Adv. Colloid Interface Sci., 171-172, 1 (2012)
- Hwang TY, Yoo Y, Lee JW, Rheol. Acta, 51(7), 623 (2012)
- Jyoti BVS, Baek SW, PROPELLANT-EXPLOS-PYROTECH, 39(6), 866 (2014)
- Kaully T, Siegmann A, Shacham D, Polym. Compos., 28, 524 (2007)
- Kim JH, Lee S, Kim BC, Shin BS, Jeon JY, Chae DW, Korea-Aust. Rheol. J., 28(1), 41 (2016)
- Lee S, Hong IK, Lee JW, Shim JS, Polym. Korea, 38(2), 225 (2014)
- Lee S, Hong IK, Lee JW, Lee KD, Polym. Korea, 38(3), 286 (2014)
- Lin CM, Liu JH, Huang Z, Gong FY, Li YB, Pan LP, Zhang JH, Liu SJ, PROPELLANT-EXPLOS-PYROTECH, 40(2), 189 (2015)
- Malkin AY, J. Non-Newton. Fluid Mech., 192, 48 (2013)
- Miller RR, Lee E, Powell RL, J. Rheol., 35, 901 (1991)
- Patenaude KJ, 2001, Modeling and Process Optimization of Nano-modified Simulant Energetic Materials, M.S. Thesis, University of Massachusetts Lowell.
- Rahimi S, Peretz A, Natan B, PROPELLANT-EXPLOS-PYROTECH, 32(2), 165 (2007)
- Saini DR, Shenoy AV, Polym. Eng. Sci., 26, 441 (1986)
- Sarangapani R, Ramavat V, Reddy S, Subramanian P, Sikder AK, Powder Technol., 273, 118 (2015)
- Schmidt M, Munstedt H, Rheol. Acta, 41(3), 193 (2002)
- Shim JS, J. Korea Inst. Mil. Sci. Technol., 4, 207 (2001)
- Shim JS, Kim HS, Lee KD, Kim JK, J. Korea Inst. Mil. Sci. Technol., 7, 100 (2004)
- Sungsanit K, Kao N, Bhattacharya SN, Pivsaart S, Korea-Aust. Rheol. J., 22(3), 187 (2010)
- Teipel U, Forter-Barth U, PROPELLANT-EXPLOS-PYROTECH, 26(6), 268 (2001)
- Thiboutot S, Brousseau P, Ampleman G, PROPELLANT-EXPLOS-PYROTECH, 40(3), 329 (2015)
- Wang Y, Wang JJ, Polym. Eng. Sci., 39(1), 190 (1999)
- Yu G, Zhang MQ, Zeng HM, Hou YH, Zhang HB, J. Appl. Polym. Sci., 73(4), 489 (1999)