화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.29, No.1, 17-27, February, 2017
Numerical investigation of the dynamics of Janus magnetic particles in a rotating magnetic field
E-mail:
We investigated the rotational dynamics of Janus magnetic particles suspended in a viscous liquid, in the presence of an externally applied rotating magnetic field. A previously developed two-dimensional direct simulation method, based on the finite element method and a fictitious domain method, is employed to solve the magnetic particulate flow. As for the magnetic problem, the two Maxwell equations are converted to a differential equation using the magnetic potential. The magnetic forces acting on the particles are treated by a Maxwell stress tensor formulation, enabling us to consider the magnetic interactions among the particles without any approximation. The dynamics of a single particle in the rotating field is studied to elucidate he effect of the Mason number and the magnetic susceptibility on the particle motions. Then, we extended our interest to a two-particle problem, focusing on the effect of the initial configuration of the particles on the particle motions. In three-particle interaction problems, the particle dynamics and the fluid flow induced by the particle motions are significantly affected by the particle configuration and the orientation of each particle.
  1. Ganguly R, Puri IK, Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol., 2, 382 (2010)
  2. Gao Y, Hulsen MA, Kang TG, den Toonder JMJ, Phys. Rev. E, 86, 041503 (2012)
  3. Gijs MAM, Microfluid. Nanofluid., 1, 22 (2004)
  4. Jung ID, Park JM, Kang TG, Kim SJ, Park SJ, Comput. Mater. Sci., 100, 39 (2015)
  5. Kang TG, Hulsen MA, den Toonder JMJ, Anderson PD, Meijer HEH, J. Comput. Phys., 227, 4441 (2008)
  6. Kang TG, Gao Y, Hulsen MA, den Toonder JMJ, Anderson PD, Comput. Fluids, 86, 569 (2013)
  7. Kawaguchi H, Prog. Polym. Sci, 25, 1171 (2000)
  8. Kim SH, Kim SJ, Park SJ, Mun JH, Kang TG, Park JM, Korea-Aust. Rheol. J., 24(2), 121 (2012)
  9. Melle S, Calderon OG, Rubio MA, Fuller GG, J. Non-Newton. Fluid Mech., 102(2), 135 (2002)
  10. Pamme N, Lab Chip, 6, 24 (2006)
  11. Ren B, Ruditskiy A, Song JH, Kretzschmar I, Langmuir, 28(2), 1149 (2012)
  12. Rikken RSM, Nolte RJM, Maan JC van Hest JCM, Wilson DA, Christianen PCM, Soft Matter, 10, 1295 (2014)
  13. Seong Y, Kang TG, Hulsen MA, den Toonder JMJ, Anderson PD, Phys. Rev. E, 93, 022607 (2016)
  14. Suh YK, Kang S, J. Eng. Math., 69, 25 (2011)
  15. Suzuki H, Ho CM, Kasagi N, J. Microelectromech. Syst., 13, 779 (2004)
  16. van Reenen A, de Jong AM, den Toonder JMJ, Prins MWJ, Lab Chip, 14, 1966 (2014)
  17. Walther A, Muller AHE, Soft Matter, 4, 663 (2008)
  18. Walther A, Muller AHE, Chem. Rev., 113(7), 5194 (2013)
  19. Yan J, Bae SC, Granick S, Soft Matter, 11, 147 (2015)
  20. Yuet KP, Hwang DK, Haghgooie R, Doyle PS, Langmuir, 26(6), 4281 (2010)
  21. Zlatkova BS, Nikolic MV, Aleksic O, Danninger H, Halwax E, J. Magn. Magn. Mater., 321, 330 (2009)