화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.2, 135-140, February, 2017
Air-Operating Polypyrrole Actuators Based on Poly(vinylidene fluoride) Membranes Filled with Poly(ethylene oxide) Electrolytes
E-mail:,
To develop air-operating conducting polymer (CP) actuators with enhanced performance, polymer electrolyte membranes with high ionic conductivity and mechanical endurance are necessary. Poly(ethylene oxide) oligomers penetrate into porous poly(vinylidene fluoride) membranes and sequentially undergo crosslinking to produce polymer electrolyte membranes. The properties of the electrolyte membranes are regulated by varying the degree of crosslinking. Polypyrrole layers are constructed on the surfaces of the membranes by chemical polymerization, creating CP actuators. CP actuators based on the resulting polymer electrolyte membranes operate properly in air and show highly enhanced performance such as a large displacement and long operation time. This approach, therefore, has great potential to extend the applications of CP actuators.
  1. Kim KJ, Tadokoro S, Eds., Electroactive Polymers for Robotic Applications: Artificial Muscles and Sensors, Springer, London, 2007.
  2. Bar-Cohen Y, Electroactive Polymer (EAP) Actuators as Artificial Muscles : Reality, Potential, and Challenges, SPIE Press, Bellingham, 2004.
  3. Smela E, Adv. Mater., 15(6), 481 (2003)
  4. Mirfakhrai T, Madden JDW, Baughman RH, Mater. Today, 10, 30 (2007)
  5. Kaneto K, J. Phys. Conf. Ser., 704, 012004 (2016)
  6. Kaneto K, Kaneko M, Min Y, MacDiarmid AG, Synth. Met., 71, 2211 (1995)
  7. Baughman RH, Synth. Met., 78, 339 (1996)
  8. Otero TF, Sansinena JM, Adv. Mater., 10(6), 491 (1998)
  9. Otero TF, Cortes MT, Adv. Mater., 15(4), 279 (2003)
  10. Jager EWH, Smela E, Inganas O, Science, 290, 1540 (2000)
  11. Bahng SH, Kwon NH, Kim HC, Siddique AB, Kang HJ, Lee JY, Kim J, Kim S, Kim J, Macromol. Res., 22(4), 445 (2014)
  12. Haryanto, Kim SC, Kim JH, Kim JO, Ku SK, Cho H, Han DH, Huh P, Macromol. Res., 22(2), 131 (2014)
  13. Thankamony RL, Chu H, Lim S, Yim T, Kim YJ, Kim TH, Macromol. Res., 23(1), 38 (2015)
  14. Vidal F, Popp JF, Plesse C, Chevrot C, Teyssie D, J. Appl. Polym. Sci., 90(13), 3569 (2003)
  15. Vidal F, Plesse C, Teyssie D, Chevrot C, Synth. Met., 142, 287 (2004)
  16. Plesse C, Vidal F, Randriamahazaka H, Teyssie D, Chevrot C, Polymer, 46(18), 7771 (2005)
  17. Cho MS, Seo HJ, Nam JD, Choi HR, Koo JC, Song KG, Lee Y, Sens. Actuators B-Chem., 119, 621 (2006)
  18. Cho M, Seo H, Nam J, Choi H, Koo J, Lee Y, Sens. Actuators B-Chem., 128, 70 (2007)
  19. Choi HJ, Song YM, C. I. D., R. K. S, Jo NJ, Smart Mater. Struct., 18, 024006 (2009)
  20. Vallee A, Besner S, Prud'Homme J, Electrochim. Acta, 37, 1579 (1992)
  21. Benrabah D, Sylla S, Alloin F, Sanchez JY, Armand M, Electrochim. Acta, 40(13-14), 2259 (1995)
  22. Fujinami T, Tokimune A, Mehta MA, Shriver DF, Rawsky GC, Chem. Mater., 9, 2236 (1997)
  23. Murata K, Izuchi S, Yoshihisa Y, Electrochim. Acta, 45(8-9), 1501 (2000)
  24. Hou XP, Siow KS, Solid State Ion., 147(3-4), 391 (2002)
  25. Peng X, Ba H, Chen D, Wang F, Electrochim. Acta, 37, 1569 (1992)
  26. Nishimoto A, Agehara K, Furuya N, Watanabe T, Watanabe M, Macromolecules, 32(5), 1541 (1999)
  27. Han MJ, Park JH, Lee JY, Jho JY, Macromol. Rapid Commun., 27(3), 219 (2006)
  28. Park JH, Han MJ, Song DS, Jho JY, ACS Appl. Mater. Interfaces, 6, 22847 (2014)
  29. Park JH, Lee SW, Song DS, Jho JY, ACS Appl. Mater. Interfaces, 7, 16659 (2015)