화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.3, 844-853, March, 2017
Quantitative estimation of internal concentration polarization in a spiral wound forward osmosis membrane module compared to a flat sheet membrane module
E-mail:
Internal concentration polarization (ICP) within the forward osmosis (FO) membrane affects the reduction of driving force. The magnitude of ICP in the FO membrane was investigated experimentally by measuring water flux in both spiral wound (SW) and flat-sheet (FS) modules with different draw solutions (sodium chloride, sodium sulfate, and disodium phosphate). The FO SW module always shows inferior water flux performance to the FO FS module. The water flux in the FO SW module can be easily estimated by just changing structure parameter. The estimated structure parameter in the FO SW module is 9.1325×10-4 m, which is quite higher than 4.2×10-4 m in the FO FS module. The increase of the structure parameter is attributed to the bending of the FO membrane in the SW module. It can be concluded that a module design such like SW type is not suitable for the FO process.
  1. Cath TY, Childress AE, Elimelech M, J. Membr. Sci., 281(1-2), 70 (2006)
  2. Chung TS, Zhang S, Wang KY, Su JC, Ling MM, Desalination, 287, 78 (2012)
  3. Kim DY, Gu B, Kim JH, Yang DR, J. Membr. Sci., 444, 440 (2013)
  4. McCutcheon JR, McGinnis RL, Elimelech M, Desalination, 174(1), 1 (2005)
  5. Shaffer DL, Yip NY, Gilron J, Elimelech M, J. Membr. Sci., 415, 1 (2012)
  6. Achilli A, Cath TY, Marchand EA, Childress AE, Desalination, 239(1-3), 10 (2009)
  7. Lutchmiah K, Verliefde A, Roest K, Rietveld LC, Cornelissen ER, Water Res., 58, 179 (2014)
  8. Su JC, Chung TS, Helmer BJ, de Wit JS, J. Membr. Sci., 396, 92 (2012)
  9. Achilli A, Cath TY, Childress AE, J. Membr. Sci., 343(1-2), 42 (2009)
  10. She QH, Jin X, Tang CYY, J. Membr. Sci., 401, 262 (2012)
  11. Yip NY, Elimelech M, Environ. Sci. Technol., 46, 5230 (2012)
  12. Jin X, Shan JH, Wang C, Wei J, Tang CYY, J. Hazard. Mater., 227, 55 (2012)
  13. Yang Q, Wang KY, Chung TS, Sep. Purif. Technol., 69(3), 269 (2009)
  14. Gray GT, McCutcheon JR, Elimelech M, Desalination, 197(1-3), 1 (2006)
  15. McCutcheon JR, Elimelech M, J. Membr. Sci., 284(1-2), 237 (2006)
  16. Tang CYY, She QH, Lay WCL, Wang R, Fane AG, J. Membr. Sci., 354(1-2), 123 (2010)
  17. Zhang S, Wang KY, Chung TS, Chen HM, Jean YC, Amy G, J. Membr. Sci., 360(1-2), 522 (2010)
  18. Wei J, Qiu CQ, Tang CYY, Wang R, Fane AG, J. Membr. Sci., 372(1-2), 292 (2011)
  19. Ingole PG, Ingole NP, Korean J. Chem. Eng., 31(12), 2109 (2014)
  20. Loeb S, Titelman L, Korngold E, Freiman J, J. Membr. Sci., 129(2), 243 (1997)
  21. Arena JT, McCloskey B, Freeman BD, McCutcheon JR, J. Membr. Sci., 375(1-2), 55 (2011)
  22. Bui NN, Lind ML, Hoek EMV, McCutcheon JR, J. Membr. Sci., 385(1-2), 10 (2011)
  23. Fang WX, Wang R, Chou SR, Setiawan L, Fane AG, J. Membr. Sci., 394, 140 (2012)
  24. Hong SS, Ryoo W, Chun MS, Chung GY, Korean J. Chem. Eng., 32(7), 1249 (2015)
  25. Klaysom C, Cath TY, Depuydt T, Vankelecom IF, Chem. Soc. Rev., 42, 6959 (2013)
  26. Cornelissen E, Harmsen D, Beerendonk E, Qin J, Kappelhof J, J. Water Reuse Desalin., 1, 133 (2011)
  27. Kim YC, Park SJ, Environ. Sci. Technol., 45, 7737 (2011)
  28. Achilli A, Cath TY, Childress AE, J. Membr. Sci., 364(1-2), 233 (2010)
  29. Hancock NT, Cath TY, Environ. Sci. Technol., 43, 6769 (2009)
  30. Ng HY, Tang W, Wong WS, Environ. Sci. Technol., 40, 2408 (2006)
  31. Kim JE, Phuntsho S, Lotfi F, Shon HK, Desalin. Water. Treat., 53, 2782 (2015)
  32. Xu Y, Peng XY, Tang CYY, Fu QSA, Nie SZ, J. Membr. Sci., 348(1-2), 298 (2010)
  33. Gu B, Kim DY, Kim JH, Yang DR, J. Membr. Sci., 379(1-2), 403 (2011)
  34. Kim DY, Gu B, Yang DR, Korean J. Chem. Eng., 30(9), 1691 (2013)
  35. Kwon SB, Lee JS, Kwon SJ, Yun ST, Lee S, Lee JH, J. Membr. Sci., 488, 111 (2015)
  36. Huang LW, Bui NN, Meyering MT, Hamlin TJ, McCutcheon JR, J. Membr. Sci., 437, 141 (2013)