Korean Journal of Chemical Engineering, Vol.34, No.3, 898-902, March, 2017
Quantitative analysis of carbon nanotube cross-linking reactions
E-mail:
Covalent cross-linking of carbon nanotubes (CNTs) is a useful way of transferring the unique properties of individual CNTs to macroscopic structures for a wide variety of applications. For elaborate engineering of the crosslinking reaction of CNTs, quantitative analysis of cross-linking reaction is imperative. We report here a universally applicable method to quantitatively analyze the cross-linking of CNTs by esterification. To distinguish the cross-linking reaction from the one-side reaction, where only one end of the linker reacts with a CNT, mass and molar balances were established based on thermogravimetric analysis data. This analysis revealed that approximately one in five linkers was involved in the cross-linking reaction. Qualitative characterizations such as Fourier transform infrared and Raman spectroscopy were also used to confirm the cross-linking reaction.
- Hirsch A, Angew. Chem.-Int. Edit., 41, 1853 (2002)
- Banerjee S, Hemraj-Benny T, Wong SS, Adv. Mater., 17(1), 17 (2005)
- Bahr JL, Tour JM, J. Mater. Chem., 12, 1952 (2002)
- Holzinger M, Steinmetz J, Samaille D, Glerup M, Paillet M, Bernier P, Ley L, Graupner R, Carbon, 42, 941 (2004)
- Min J, Cai JY, Sridhar M, Easton CDR, Gengenbach T, McDonnell J, Humphries W, Lucas S, Carbon, 52, 520 (2013)
- Kim H, Lee J, Park B, Sa JH, Jung A, Kim T, Park J, Hwang W, Lee KH, Korean J. Chem. Eng., 33, 299 (2015)
- Chen IW, Liang R, Zhao H, Wang B, Zhang C, Nanotechnology, 22, 485708 (2011)
- Ogino SI, Sato Y, Yamamoto G, Sasamori K, Kimura H, Hashida T, Motomiya K, Jeyadevan B, Tohji K, J. Phys. Chem. B, 110(46), 23159 (2006)
- Satti A, Perret A, McCarthy JE, Gun'ko YK, J. Mater. Chem., 20, 7941 (2010)
- De Marco M, Markoulidis F, Menzel R, Bawaked SM, Mokhtar M, Al-Thabaiti SA, Basahel SN, Shaffer MSP, J. Mater. Chem. A, 4, 5385 (2016)
- Nie H, Guo W, Yuan Y, Dou Z, Shi Z, Liu Z, Wang H, Liu Y, Nano Res., 3, 103 (2010)
- Biso M, Ansaldo A, Futaba DN, Hata K, Ricci D, Carbon, 49, 2253 (2011)
- Homenick CM, Sheardown H, Adronov A, J. Mater. Chem., 20, 2887 (2010)
- Zhang YC, Broekhuis AA, Stuart MCA, Landaluce TF, Fausti D, Rudolf P, Picchioni F, Macromolecules, 41(16), 6141 (2008)
- Jakubinek MB, Ashrafi B, Guan J, Johnson MB, White MA, Simard B, RSC Adv., 4, 57564 (2014)
- Shaffer MS, Fan X, Windle A, Carbon, 36, 1603 (1998)
- Ros TG, Van Dillen AJ, Geus JW, Koningsberger DC, Chem.-Eur. J., 8, 1151 (2002)
- Hamilton RF, Wu N, Xiang C, Li M, Yang F, Wolfarth M, Porter DW, Holian A, Part. Fibre. Toxicol., 11, 1 (2014)
- Zalipsky S, Gilon C, Zilkha A, Eur. Polym. J., 19, 1177 (1983)
- Zhu J, Peng HQ, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AM, Lozano K, Barrera EV, Adv. Funct. Mater., 14(7), 643 (2004)
- Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV, Nano Lett., 3, 1107 (2003)
- Jiang C, Saha A, Xiang C, Young CC, Tour JM, Pasquali M, Marti AA, ACS Nano, 7, 4503 (2013)
- DiLeo RA, Landi BJ, Raffaelle RP, J. Appl. Phys., 101, 064307 (2007)