Applied Surface Science, Vol.395, 61-65, 2017
Surface chemistry of a hydrogenated mesoporous p-type silicon
The finality of this work is devoted to the grafting of organic molecules on hydrogen passivated mesoporous silicon surfaces. The study would aid in the development for the formation of organic monolayers on silicon surface to be exploited for different applications such as the realisation of biosensors and medical devices. The basic material is silicon which has been first investigated by FTIR at atomistic plane during the anodic forward and backward polarization (i.e. "go" and "return"). For this study, we applied a numerical program based on least squares method to infrared absorbance spectra obtained by an in situ attenuated total reflection on p-type silicon in diluted HF electrolyte. Our numerical treatment is based on the fitting of the different bands of IR absorbance into Gaussians corresponding to the different modes of vibration of molecular groups such as siloxanes and hydrides. An adjustment of these absorbance bands is done systematically. The areas under the fitted bands permit one to follow the intensity of the different modes of vibration that exist during the anodic forward and backward polarization in order to compare the reversibility of the phenomenon of the anodic dissolution of silicon. It permits also to follow the evolution between the hydrogen silicon termination at forward and backward scanning applied potential. Finally a comparison between the states of the initial and final surface was carried out. We confirm the presence of clearly four and three distinct vibration modes of siloxanes/hydroxide, SiOx, and hydrides, SiHx, respectively. The results show clearly that the adsorbed species found in the final stage after an electrochemical treatment consist of surface hydrogen and they show also that the surface morphology is different compared to the starting one, which is considered as reference. It is clear that the H-terminated of porous silicon surface is hydrophobic in nature. The hydrophobic character of this surface makes difficult the grafting of a probe which serves to get other molecules; where from the necessity of the presence of a hydrophilic surface on the porous silicon surface. This will facilitate the penetration and the grafting of the molecules probes. So to improve the penetration and the grafting of the organic molecules or the immobilization of the probes on the hydrogenated mesoporous silicon surfaces under wet chemical conditions an intermediate step is required. In this second study, we use the following procedure. After the porosification of the silicon by electrochemical anodisation, the porous SiH layer returns a hydrophobic surface. This stage is a starting point of multistep scheme for the surface modification. The next step is the thermal hydrosilylation in order to have an acidic surface. The acidic surface was then modified by the chains of Poly(ethylene glycol) (PEG) which is a highly investigated polymer for the covalent modification of biological macromolecules and surfaces. The grafting of PEG returns a hydrophilic surface confirmed by the IR results. (C) 2016 Elsevier B.V. All rights reserved.