화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.61, No.11, 3452-3463, 2016
Wave Equation With Cone-Bounded Control Laws
This paper deals with a wave equation with a one-dimensional space variable, which describes the dynamics of string deflection. Two kinds of control are considered: a distributed action and a boundary control. It is supposed that the control signal is subject to a cone-bounded nonlinearity. This kind of feedback laws includes (but is not restricted to) saturating inputs. By closing the loop with such a nonlinear control, it is thus obtained a nonlinear partial differential equation, which is the generalization of the classical 1D wave equation. The well-posedness is proven by using nonlinear semigroups techniques. Considering a sector condition to tackle the control nonlinearity and assuming that a tuning parameter has a suitable sign, the asymptotic stability of the closed-loop system is proven by Lyapunov techniques. Some numerical simulations illustrate the asymptotic stability of the closed-loop nonlinear partial differential equations.