화학공학소재연구정보센터
Inorganic Chemistry, Vol.56, No.1, 313-320, 2017
Hiding in Plain Sight: The Bimetallic Magnesium Covalent Bond in Enzyme Active Sites
The transfer of phosphate groups is an essential function of many intracellular biological enzymes. The transfer is in many cases facilitated by a protein scaffold involving two closely spaced magnesium "ions". It has long been a mystery how these "ions" can retain their closely spaced positions throughout enzymatic phosphate transfer: Coulomb's law would dictate large repulsive forces between these ions at the observed distances. Here we show, however, that the electron density can be borrowed from nearby electron-rich oxygens to populate a bonding molecular orbital that is largely localized between the magnesium "ions". The result is that the Mg-Mg core of these phosphate transfer enzymes is surprisingly similar to a metastable [Mg-2](2+) ion in the gas phase, an ion that has been identified experimentally and studied with high-level quantum-mechanical calculations. This similarity is confirmed by comparative computations of the electron densities of [Mg-2](2+) in the gas phase and the Mg-Mg core in the structures derived from QM/MM studies of high-resolution X-ray crystal structures. That there is a level of covalent bonding between the two Mg "ions" at the core of these enzymes is a novel concept that enables an improved vision of how these enzymes function at the molecular level. The concept is broader than magnesium-other biologically relevant metals (e.g., Mn and Zn) can also form similar stabilizing covalent Me-Me bonds in both organometallic and inorganic crystals.