Journal of Colloid and Interface Science, Vol.490, 844-849, 2017
Synthesis of scalable and tunable slightly oxidized graphene via chemical vapor deposition
Semiconducting, large sheets of carbon as an active material in optoelectronic research are missing and reduced graphene oxide (rGO) can be a good candidate. However, chemical synthesis cannot produce large sheets of rGO (i.e. maximum: 20-30 mu m) as well as high quality rGO due to the restraints of fabrication method. Thus, a novel strategy for the synthesis of large sheets of semiconducting rGO is urgently required. Large area slightly oxidized graphene (SOG) is fabricated at the interface of silicon dioxide (SiO2) and silicon via Chemical Vapor Deposition (CVD) method, herein for the first time. Carbon atoms bond with oxygen functionalities (i.e. C=O, C-OH) at the time of diffusion in SiO2 allowing for C/O ratios from 7 to 10 adjustable by the variation of SiO2 thickness, indicating the tunable oxidation. Moreover, electronic structure and morphology of SOG are similar to the chemically grown rGO. The fabrication mechanism of SOG is also investigated. (C) 2016 Elsevier Inc. All rights reserved.
Keywords:Graphene oxide;Chemical vapor deposition