Journal of Crystal Growth, Vol.456, 140-144, 2016
Tri-halide vapor phase epitaxy of thick GaN using gaseous GaCl3 precursor
Tri-halide vapor phase epitaxy (THVPE) of thick GaN using GaCl3 was investigated for fabricating low-cost, high-crystalline-quality GaN substrates instead of the conventional manufacturing method of GaCl-based hydride vapor phase epitaxy (HVPE). The growth rate and upper growth temperature limit of GaN using THVPE were found to be much higher than those obtained using conventional HVPE under the same growth conditions. Drastic reduction in the number of dark spots measured by cathodoluminescence at room temperature was observed for the high-temperature-grown GaN layer on the (000-1) GaN/sapphire template due to the enhancement of precursor migration on the growing surface. It was found that the incorporation of impurities such as O, C, and Cl can be reduced even on the N-polarity GaN by increasing the growth temperature. The possibility of enlargement of the crystal diameter by growing the N-polarity GaN layer using THVPE was also proposed. (C) 2016 Elsevier B.V. All rights reserved.