Journal of Crystal Growth, Vol.456, 151-154, 2016
Growth of free-standing bulk wurtzite AlxGa1-xN layers by molecular beam epitaxy using a highly efficient RF plasma source
The recent development of group III nitrides allows researchers world-wide to consider AlGaN based light emitting diodes as a possible new alternative deep ultra-violet light source for surface decontamination and water purification. In this paper we will describe our recent results on plasma-assisted molecular beam epitaxy (PA-MBE) growth of free-standing wurtzite AlxGa1-xN bulk crystals using the latest model of Riber's highly efficient nitrogen RF plasma source. We have achieved AlGaN growth rates up to 3 mu m/h. Wurtzite AlxGa1-xN layers with thicknesses up to 100 mu m were successfully grown by PA-MBE on 2-inch and 3-inch GaAs (111)B substrates. After growth the GaAs was subsequently removed using a chemical etch to achieve free-standing AlxGa1-xN wafers. Free-standing bulk AlxGa1-xN wafers with thicknesses in the range 30-100 mu m may be used as substrates for further growth of AlxGa1-xN-based structures and devices. High Resolution Scanning Transmission Electron Microscopy (HR-STEM) and Convergent Beam Electron Diffraction (CBED) were employed for detailed structural analysis of AlGaN/GaAs (111)B interface and allowed us to determine the N-polarity of AlGaN layers grown on GaAs (111)B substrates. The novel, high efficiency RF plasma source allowed us to achieve free-standing AlxGa1-xN layers in a single day's growth, making this a commercially viable process. (C) 2016 The Authors. Published by Elsevier B.V.