Journal of Hazardous Materials, Vol.324, 48-53, 2017
Elemental sulfur recovery and spatial distribution of functional bacteria and expressed genes under different carbon/nitrate/sulfide loadings in up-flow anaerobic sludge blanket reactors
To characterize the impact of influent loading on elemental sulfur (S) recovery during the denitrifying and sulfide oxidation process, three identical, lab-scale UASB reactors (30 cm in length) were established in parallel under different influent acetate/nitrate/sulfide loadings, and the reactor performance and functional community structure were investigated. The highest S recovery was achieved at 77.9% when the acetate/nitrate/sulfide loading was set to 1.9/1.6/0.7 kg d(-1) m(-3). Under this condition, the genera Thauera, Sulfurimonas, and Azoarcus were predominant at 0-30, 0-10 and 20-30 cm, respectively; meanwhile, the sqr gene was highly expressed at 0-30 cm. However, as the influent loading was halved and doubled, S recovery was decreased to 27.9% and 45.1%, respectively. As the loading was halved, the bacterial distribution became heterogeneous, and certain autotrophic sulfide oxidation genera, such as Thiobacillus, dominated, especially at 20-30 cm. As the loading doubled, the bacterial distribution was relatively homogeneous with Thauera and Azoarcus being predominant, and the nirK and sox genes were highly expressed. The study verified the importance of influent loading to regulate S recovery, which could be achieved as Thauera and Sulfurimonas dominated. An influent loading that was too low or too high gave rise to insufficient oxidation or over-oxidation of the sulfide and low S-0 recovery performance. (C) 2016 Elsevier B.V. All rights reserved.
Keywords:Elemental sulfur recovery;Influent loading;Denitrifying sulfide removal (DSR) process;Up-flow anaerobic sludge blanket (UASB) reactor;Bacterial structure