화학공학소재연구정보센터
Journal of Power Sources, Vol.340, 263-272, 2017
Scalable synthesis of hierarchical hollow Li4Ti5O12 microspheres assembled by zigzag-like nanosheets for high rate lithium-ion batteries
Electrochemical performance, abundance and cost are three crucial criteria to comprehensively evaluate the feasibility of Li4Ti5O12 as an electrode material for lithium-ion batteries (LIBs). Herein, hierarchical hollow Li4Ti5O12 microspheres (HLTOMs) assembled by zigzag-like nanosheets are synthesized by hydrothermal treatment of scalable lithium peroxotitanate complex solution using low-cost commercial H2TiO3 particles as titanium sources, followed by a calcination treatment. Precursor solution concentration, Li/Ti ratio, hydrothermal temperature and duration are found correlative and should be optimized to obtain pure Li4Ti5O12 products. A high yield of HLTOMs up to 120 g L-1 was achieved. Due to the unique morphology, the HLTOMs deliver an outstanding rate capability of 139, 125 and 108 mA h g(-1) at 10, 20 and 30 C, respectively, and exhibit 94% capacity retention after 1000 cycles at 30C indicating excellent stability. These values are much superior to those of commercial Li4Ti5O12 particles (CLTOPs), showing HLTOMs are promising anode materials for LIBs. (C) 2016 Elsevier B.V. All rights reserved.