Journal of the American Chemical Society, Vol.138, No.49, 16069-16080, 2016
Dynamic Exchange During Triplet Transport in Nanocrystalline TIPS-Pentacene Films
The multiplication of excitons in organic semiconductors via singlet fission offers the potential for photovoltaic cells that exceed the Shockley-Quiesser limit for single-junction devices. To fully utilize the potential of singlet fission sensitizers in devices, it is necessary to understand and control the diffusion of the resultant triplet excitons. In this work, a new processing method is reported to systematically tune the intermolecular order and crystalline structure in films of a model singlet fission chromophore, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn), without the need for chemical modifications. A combination of transient absorption spectroscopy and quantitative materials characterization enabled a detailed examination of the distance- and time-dependence of triplet exciton diffusion following singlet fission in these nanocrystalline TIPS-Pn films. Triplet triplet annihilation rate constants were found to be representative of the weighted average of crystalline and amorphous phases in TIPS-Pn films comprising a mixture of phases. Adopting a diffusion model used to describe triplet triplet annihilation, the triplet diffusion lengths for nanocrystalline and amorphous films of TIPS-Pn were estimated to be similar to 75 and similar to 14 nm, respectively. Importantly, the presence of even a small fraction (<10%) of the amorphous phase in the TIPS-Pn films greatly decreased the ultimate triplet diffusion length, suggesting that pure crystalline materials may be essential to efficiently harvest multiplied triplets even when singlet fission occurs on ultrafast time scales.