Polymer(Korea), Vol.41, No.2, 242-249, March, 2017
셀룰로오스 아세테이트/폴리에틸렌글리콜(PEG600)에 대한 폴리에틸렌글리콜(PEG200), 트리아세틴(TA)의 가소화 효과 및 기계적 물성
Plasticizing Effect and Mechanical Properties of Polyethylene Glycol (PEG200), Triacetin (TA) on Cellulose Acetate/Polyethylene Glycol (PEG600)
E-mail:
초록
본 연구에서는 셀룰로오스 아세테이트(CA)/폴리에틸렌글리콜(PEG600)의 가소화 한계를 살펴보고 폴리에틸렌글리콜(PEG200), 트리아세틴(TA)을 각각 도입하여 가소화 효과를 향상하고자 하였다. CA/PEG600/PEG200, CA/PEG600/TA는 Tg의 감소가 약 150°C에서 각각 132°C, 145°C로 가소화 효과의 향상을 확인하였다. 특히 CA/PEG600/PEG200은 CA/PEG600/TA보다 혼화성이 좋은 것을 확인하였다. CA/PEG600/PEG200은 용융 흐름성을 증가시키지만 CA/PEG600/TA는 오히려 감소시키는 것을 확인하였다. CA/PEG600/PEG200은 CA/PEG600에 비해 인장강도 및 신장률 모두 증가하지만 CA/PEG600/TA는 인장강도의 증가만을 확인하였다. 또한 이축 압출기를 통한 CA/PEG600의 가소화 영향은 기존 실험보다 상대적으로 감소하는 것을 확인하였다.
In this study, cellulose acetate (CA)/polyethylene glycol (PEG600) were investigated for the limitation of the lasticizing. Then, polyethylene glycol (PEG200) and triacetin (TA) were respectively introduced to improve the plasticizing effect. As a result, CA/PEG600/PEG200, CA/PEG600/TA confirmed an increase in the plasticizing effect by decreasing the Tg from about 150 °C to 132 °C, and 145 °C. In particular, CA/PEG600/PEG200 had better miscibility than CA/PEG600/TA. It was also found that the melt flow of CA/PEG600/PEG200 was increased but CA/PEG600/TA was decreased. CA/PEG600/PEG200 was increased both tensile strength and elongation compared to CA/PEG600, while CA/PEG600/TA indicated only an increase in tensile strength. The influences of twin-screw extruder were confirmed that plasticizing effect relatively decreased to compare the conventional experiment.
- Campbell NA, Reece JB, Biology, 8th edition, Benjamin Cummings, USA, p 72 (2007).
- Kaplan DL, Biopolymers from Renewable Resources, Kaplan DL, Editor, Springer, Herlin, p 1 (1998).
- Klemm D, Heublein B, Fink HP, Bohn A, Angew. Chem.-Int. Edit., 44, 3358 (2005)
- Scandola M, Ceccorulli G, Polymer, 26, 1953 (1985)
- Klemm D, Schmauder HP, Heinze T, Biopolymers, Vandamme E, Beats SD, Steinbchel A, Editors, Wiley-VCH, Weinheim, Vol 6, p 290 (2002).
- Lee SH, Lee SY, Nam JD, Lee Y, Polym. Korea, 30(1), 70 (2006)
- Hermanutz F, Gahr F, Pirngadi P, Chem. Fibers Int., 51, 271 (2005)
- Mwaikambo LY, Ansell MP, Angew. Makromol. Chem., 272, 108 (1999)
- Lu X, Zhang MQ, Rong MZ, Shi G, Yang C, Zeng HM, Adv. Compos. Lett., 8, 231 (1999)
- Hon DNS, Josefina MSL, J. Polym. Sci. A: Polym. Chem., 27, 4143 (1989)
- Hon DNS, Ou NJ, J. Polym. Sci. A: Polym. Chem., 27, 2457 (1989)
- Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MS, Tindal D, Polym. Sci., 26, 1607 (2001)
- Edgar KJ, Pecorini TJ, Glasser WG, in Cellulose Derivatives-Modification, Characterization and Microstructures, Heinze TJ, Glasser WG, Editors, ACS Symposium Series, ACS, Washington DC, Vol 688, p 38 (1998).
- Buchana CM, Gardner RM, Komarek RJ, Polym. Sci., 47, 1709 (1993)
- Komarek RJ, Gardner RM, Buchanan CN, Gedon S, J. Appl. Polym. Sci., 50, 1739 (1993)
- Ach A, J. Macromol. Sci.-Pure Appl. Chem., 30, 733 (1993)
- Brydson J, Plastics Materials, 7th edition, Butterworth-Heinemann, UK, 1999.
- Frohoff-Hulsmann MA, Lippold BC, McGinity JW, Eur. J. Pharm. Biopharm., 48, 67 (1999)
- Bechard SR, Levy L, Clas SD, Int. J. Pharm., 114, 205 (1995)
- Brydson JA, Plastic materials, 5th edition, Butterworths, London, p 583 (1989).
- Lee SH, Lee SY, Lim HK, Nam JD, Kye H, Lee Y, Polym. Korea, 30(3), 202 (2006)
- Mohanty AK, Wibowo A, Misra M, Drzal LT, Polym. Eng. Sci., 43(5), 1151 (2003)
- Do CH, Polym. Korea, 28(1), 1 (2004)
- Choi SH, Cho MS, Kim D, Kim JH, Lee DH, Shim SJ, Nam JD, Lee Y, Polym. Korea, 29(4), 399 (2005)
- Mohanty AK, Misra M, Drzal LT, Compos. Interfaces, 8(5), 313 (2001)
- Rahman M, Brazel CS, Prog. Polym. Sci, 29, 1223 (2004)
- Quintana R, Persenaire O, Bonnaud L, Dubois P, Polym. Chem., 3, 591 (2012)
- Cao N, Yang X, Food Hydrocolloids, 23, 729 (2009)
- Suyatma NE, Tighzert L, Copinet A, J. Agric. Food Chem., 53, 3950 (2005)
- Audic J, Chaufer B, Eur. Polym. J., 41, 1934 (2005)
- Cuq B, Gontard N, Cuq J, Guilbert S, J. Agric. Food Chem., 45, 622 (1997)
- Jangchud A, Chinnan MS, Lebenson. Wiss. Technol., 32, 79 (1999)
- Smits ALM, Kruiskamp PH, Van Soest JJG, Vliegenthart JFG, Carbohydr. Polym., 53, 409 (2003)
- Rotta J, Ozorio RA, Kehrwald AM, Barra GMO, Amboni RDMC, Barreto PLM, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 29, 619 (2009)
- Yuan J, Shang PP, Wu SH, Pharmaceutical Technololgy, 25, 62 (2001)
- Yamashita Y, Endo T, J. Appl. Polym. Sci., 100(3), 1816 (2006)
- Guo JH, Drug Dev. Ind. Pharm., 19, 1541 (1993)
- Robert Q, Olivier P, Yahia L, John S, Stuart M, Leila B, Philippe D, Polym. Degrad. Stabil., 98, 1556 (2013)
- Kim GH, Kim DY, Kim SG, Kim DH, Seo KH, Polym. Korea, 39(4), 649 (2015)
- Xing Ding Yu, Dong Wen Yi, Chung Tai-Shung, Ind. Eng. Chem. Res., 55(27), 7505 (2016)
- Auiton ME, Houghton RJ, Wells JI, J. Pharm. Pharmacol., 37, 113 (1985)
- Barton AFM, Solubility Parameters and other Cohesion Parameters, CRC Press, Boca Raton, Florida, p 406 (1991).
- Hansen CM, Hansen Solubility parameters: A User’s Handbook, CRC Press, Boca Raton, Florida, p 470 (2007).
- Vaughan CD, J. Soc. Cosmet. Chem., 36, 319 (1985)
- Labrecque LV, Dave V, Gross RA, McCarthy SP, ANTEC ‘95, 1819 (1995)
- Sakellariou P, Rowe RC, White JD, Int. J. Pharm., 31, 55 (1986)
- Lan LW, Polymer physics, Northwest Industrial University Press, Xian, p 170 (1993).
- Bai H, Zhou Y, Wang X, Zhang L, Procedia. Environ. Sci., 16, 346 (2012)
- Liu LX, Khang GS, Rhee JM, Polym. Korea, 7, 289 (1999)