화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.2, 242-249, March, 2017
셀룰로오스 아세테이트/폴리에틸렌글리콜(PEG600)에 대한 폴리에틸렌글리콜(PEG200), 트리아세틴(TA)의 가소화 효과 및 기계적 물성
Plasticizing Effect and Mechanical Properties of Polyethylene Glycol (PEG200), Triacetin (TA) on Cellulose Acetate/Polyethylene Glycol (PEG600)
E-mail:
초록
본 연구에서는 셀룰로오스 아세테이트(CA)/폴리에틸렌글리콜(PEG600)의 가소화 한계를 살펴보고 폴리에틸렌글리콜(PEG200), 트리아세틴(TA)을 각각 도입하여 가소화 효과를 향상하고자 하였다. CA/PEG600/PEG200, CA/PEG600/TA는 Tg의 감소가 약 150°C에서 각각 132°C, 145°C로 가소화 효과의 향상을 확인하였다. 특히 CA/PEG600/PEG200은 CA/PEG600/TA보다 혼화성이 좋은 것을 확인하였다. CA/PEG600/PEG200은 용융 흐름성을 증가시키지만 CA/PEG600/TA는 오히려 감소시키는 것을 확인하였다. CA/PEG600/PEG200은 CA/PEG600에 비해 인장강도 및 신장률 모두 증가하지만 CA/PEG600/TA는 인장강도의 증가만을 확인하였다. 또한 이축 압출기를 통한 CA/PEG600의 가소화 영향은 기존 실험보다 상대적으로 감소하는 것을 확인하였다.
In this study, cellulose acetate (CA)/polyethylene glycol (PEG600) were investigated for the limitation of the lasticizing. Then, polyethylene glycol (PEG200) and triacetin (TA) were respectively introduced to improve the plasticizing effect. As a result, CA/PEG600/PEG200, CA/PEG600/TA confirmed an increase in the plasticizing effect by decreasing the Tg from about 150 °C to 132 °C, and 145 °C. In particular, CA/PEG600/PEG200 had better miscibility than CA/PEG600/TA. It was also found that the melt flow of CA/PEG600/PEG200 was increased but CA/PEG600/TA was decreased. CA/PEG600/PEG200 was increased both tensile strength and elongation compared to CA/PEG600, while CA/PEG600/TA indicated only an increase in tensile strength. The influences of twin-screw extruder were confirmed that plasticizing effect relatively decreased to compare the conventional experiment.
  1. Campbell NA, Reece JB, Biology, 8th edition, Benjamin Cummings, USA, p 72 (2007).
  2. Kaplan DL, Biopolymers from Renewable Resources, Kaplan DL, Editor, Springer, Herlin, p 1 (1998).
  3. Klemm D, Heublein B, Fink HP, Bohn A, Angew. Chem.-Int. Edit., 44, 3358 (2005)
  4. Scandola M, Ceccorulli G, Polymer, 26, 1953 (1985)
  5. Klemm D, Schmauder HP, Heinze T, Biopolymers, Vandamme E, Beats SD, Steinbchel A, Editors, Wiley-VCH, Weinheim, Vol 6, p 290 (2002).
  6. Lee SH, Lee SY, Nam JD, Lee Y, Polym. Korea, 30(1), 70 (2006)
  7. Hermanutz F, Gahr F, Pirngadi P, Chem. Fibers Int., 51, 271 (2005)
  8. Mwaikambo LY, Ansell MP, Angew. Makromol. Chem., 272, 108 (1999)
  9. Lu X, Zhang MQ, Rong MZ, Shi G, Yang C, Zeng HM, Adv. Compos. Lett., 8, 231 (1999)
  10. Hon DNS, Josefina MSL, J. Polym. Sci. A: Polym. Chem., 27, 4143 (1989)
  11. Hon DNS, Ou NJ, J. Polym. Sci. A: Polym. Chem., 27, 2457 (1989)
  12. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MS, Tindal D, Polym. Sci., 26, 1607 (2001)
  13. Edgar KJ, Pecorini TJ, Glasser WG, in Cellulose Derivatives-Modification, Characterization and Microstructures, Heinze TJ, Glasser WG, Editors, ACS Symposium Series, ACS, Washington DC, Vol 688, p 38 (1998).
  14. Buchana CM, Gardner RM, Komarek RJ, Polym. Sci., 47, 1709 (1993)
  15. Komarek RJ, Gardner RM, Buchanan CN, Gedon S, J. Appl. Polym. Sci., 50, 1739 (1993)
  16. Ach A, J. Macromol. Sci.-Pure Appl. Chem., 30, 733 (1993)
  17. Brydson J, Plastics Materials, 7th edition, Butterworth-Heinemann, UK, 1999.
  18. Frohoff-Hulsmann MA, Lippold BC, McGinity JW, Eur. J. Pharm. Biopharm., 48, 67 (1999)
  19. Bechard SR, Levy L, Clas SD, Int. J. Pharm., 114, 205 (1995)
  20. Brydson JA, Plastic materials, 5th edition, Butterworths, London, p 583 (1989).
  21. Lee SH, Lee SY, Lim HK, Nam JD, Kye H, Lee Y, Polym. Korea, 30(3), 202 (2006)
  22. Mohanty AK, Wibowo A, Misra M, Drzal LT, Polym. Eng. Sci., 43(5), 1151 (2003)
  23. Do CH, Polym. Korea, 28(1), 1 (2004)
  24. Choi SH, Cho MS, Kim D, Kim JH, Lee DH, Shim SJ, Nam JD, Lee Y, Polym. Korea, 29(4), 399 (2005)
  25. Mohanty AK, Misra M, Drzal LT, Compos. Interfaces, 8(5), 313 (2001)
  26. Rahman M, Brazel CS, Prog. Polym. Sci, 29, 1223 (2004)
  27. Quintana R, Persenaire O, Bonnaud L, Dubois P, Polym. Chem., 3, 591 (2012)
  28. Cao N, Yang X, Food Hydrocolloids, 23, 729 (2009)
  29. Suyatma NE, Tighzert L, Copinet A, J. Agric. Food Chem., 53, 3950 (2005)
  30. Audic J, Chaufer B, Eur. Polym. J., 41, 1934 (2005)
  31. Cuq B, Gontard N, Cuq J, Guilbert S, J. Agric. Food Chem., 45, 622 (1997)
  32. Jangchud A, Chinnan MS, Lebenson. Wiss. Technol., 32, 79 (1999)
  33. Smits ALM, Kruiskamp PH, Van Soest JJG, Vliegenthart JFG, Carbohydr. Polym., 53, 409 (2003)
  34. Rotta J, Ozorio RA, Kehrwald AM, Barra GMO, Amboni RDMC, Barreto PLM, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 29, 619 (2009)
  35. Yuan J, Shang PP, Wu SH, Pharmaceutical Technololgy, 25, 62 (2001)
  36. Yamashita Y, Endo T, J. Appl. Polym. Sci., 100(3), 1816 (2006)
  37. Guo JH, Drug Dev. Ind. Pharm., 19, 1541 (1993)
  38. Robert Q, Olivier P, Yahia L, John S, Stuart M, Leila B, Philippe D, Polym. Degrad. Stabil., 98, 1556 (2013)
  39. Kim GH, Kim DY, Kim SG, Kim DH, Seo KH, Polym. Korea, 39(4), 649 (2015)
  40. Xing Ding Yu, Dong Wen Yi, Chung Tai-Shung, Ind. Eng. Chem. Res., 55(27), 7505 (2016)
  41. Auiton ME, Houghton RJ, Wells JI, J. Pharm. Pharmacol., 37, 113 (1985)
  42. Barton AFM, Solubility Parameters and other Cohesion Parameters, CRC Press, Boca Raton, Florida, p 406 (1991).
  43. Hansen CM, Hansen Solubility parameters: A User’s Handbook, CRC Press, Boca Raton, Florida, p 470 (2007).
  44. Vaughan CD, J. Soc. Cosmet. Chem., 36, 319 (1985)
  45. Labrecque LV, Dave V, Gross RA, McCarthy SP, ANTEC ‘95, 1819 (1995)
  46. Sakellariou P, Rowe RC, White JD, Int. J. Pharm., 31, 55 (1986)
  47. Lan LW, Polymer physics, Northwest Industrial University Press, Xian, p 170 (1993).
  48. Bai H, Zhou Y, Wang X, Zhang L, Procedia. Environ. Sci., 16, 346 (2012)
  49. Liu LX, Khang GS, Rhee JM, Polym. Korea, 7, 289 (1999)