화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.2, 287-294, March, 2017
PET/Polyetherimide/탄소나노튜브 나노복합재료의 전기적, 열적 물성
Electrical and Thermal Properties of PET/Polyetherimide/Multiwalled Carbon Nanotube Nanocomposites
E-mail:
초록
Poly(ethylene terephthalate) (PET)/Polyetherimide(PEI) 블렌드에 탄소나노튜브가 첨가된 나노복합재료에 대해서 연구하였다. 나노복합재료 내의 PET와 PEI의 조성에 따라 탄소나노튜브가 0.25 wt% 내지 0.5 wt% 정도에서 percolation threshold 값이 있었다. 특히 PEI의 함량이 큰 경우가 전도도에 유리한 것으로 나타났는데, 이러한 경우 탄소나노튜브의 분산이 좋기 때문이다. 용융 블렌딩 후 나노복합재료를 급랭시킨 경우와 215 °C 또는 130 °C에서 열처리한 경우를 비교 조사한 결과, 열처리에 의해 전기전도도가 상승하였다. 시차주사열량계를 이용한 열적 분석으로 PET/PEI 블렌드가 열처리에 의해 상분리 및 결정화가 증가하였고, 이는 SAXS를 이용한 분석을 통해서도 확인하였다. 이러한 상분리 등의 요인이 열처리에 의한 전기전도도의 증가로 나타나는 것으로 생각되었다.
Nanocomposites of blends of poly(ethylene terephthalate) (PET) and polyetherimide (PEI) with multiwalled carbon nanotube (CNT) were studied. The percolation threshold value for electrical conductivity of PET/PEI/CNT nanocomposites was observed to be in the range of 0.25 wt% or 0.5 wt%, depending on the content of PET and PEI in the nanocomposites. Especially, nanocomposites with PEI-rich composition showed better electrical conductivity than PETrich nanocomposites due to the good dispersion of CNT. Electrical conductivity of the nanocomposite was increased by the heat treatment. Annealed nanocomposite at 130 °C showed better electrical conductivity than quenched nanocomposite or annealed one at 215 °C. DSC results showed that the heat treatment conditions altered the phase separation and crystallization behavior of PET/PEI blends. SAXS analysis gave similar results. The increased electrical conductivity by heat treatment seemed to be brought about by such factors including phase separation.
  1. Chen HL, Macromolecules, 28, 8 (1995)
  2. Chen HL, Hsiao MS, Macromolecules, 31, 19 (1998)
  3. Chen HL, Hwang JC, Chen CC, Polymer, 37, 24 (1996)
  4. Filho AR, Barros AF, Polym. Degrad. Stabil., 73, 3 (2001)
  5. Chen HL, Hwang JC, Yang JM, Wang RC, Polymer, 39, 26 (1998)
  6. Lee JK, Choi WS, Kwon YK, Lee KH, Polymer, 43, 9 (2002)
  7. Yang J, Park JY, Lee CJ, Kim HM, Lee HG, Jang NG, Ko HA, Cho SA, Yang DH, Khang G, Polym. Korea, 39(1), 6 (2015)
  8. Kook JH, Huh MY, Yang H, Shin DH, Park DH, Nah C, Polym. Korea, 31, 5 (2007)
  9. Choi S, Jeong Y, Polym. Korea, 38, 2 (2014)
  10. Mazinani S, Ajji A, Dubois C, J. Polym. Sci. B: Polym. Phys., 48, 19 (2010)
  11. Chang YH, Wu MS, Lin KF, J. Polym. Res., 21, 419 (2014)
  12. Liu T, Tong Y, Zhang WD, Compos. Sci. Technol., 67, 3 (2007)
  13. Tunckol M, Hernandez EZ, Sarasua JR, Durand J, Eur. Polym. J., 49, 12 (2013)
  14. Ding C, Liu K, Guo C, Jia D, Cheng B, Polym. Eng. Sci., 56, 4 (2016)
  15. Wu Z, Xue M, Wang H, Tian X, Ding X, Zheng K, Cui P, Polymer, 54, 13 (2013)
  16. Logakis E, Pissis P, Pospiech D, Korwitz A, Krause B, Reuter U, Potschke P, Eur. Polym. J., 46, 5 (2010)
  17. Anand KA, Agarwal US, Joseph R, Polymer, 47, 11 (2006)
  18. Li Z, Luo G, Wei F, Huang Y, Compos. Sci. Technol., 66, 7 (2006)
  19. Frauenrath H, Keul H, Hocker H, Macromolecules, 34(1), 14 (2001)