화학공학소재연구정보센터
Macromolecules, Vol.49, No.23, 8980-8987, 2016
Fabrication of Tough Hydrogels from Chemically Cross-Linked Multiple Neutral Networks
A simple method was developed to fabricate tough hydrogels from a chemically cross-linked neutral hydrogel. Loosely cross-linked pseudoand true-interpenetrating polymer network (IPN) hydrogels with double-, triple-, and quadruple-network structures were synthesized from acrylamide (AAm), and their mechanical properties were studied. Increasing the number of polymeric networks significantly changed the mechanical properties of pseudo-IPN hydrogels even though the chemical composition and polymerization procedure of each individual network was the same. The SN and DN hydrogels showed behavior similar to extensible soft tissue, but the TN and QN hydrogels exhibited strain localization during tensile deformation. Loading unloading reloading tensile experiments indicated that tensile loading causes no damage to the SN and DN hydrogels. For pseudo-IPN hydrogels where strain localization occurred, unloading before strain localization resulted in no damage, but unloading after strain localization showed a large hysteresis due to the energy dissipation from damage to the internal structure of the sample. No damage occurred prior to failure in the SN, DN, and TN hydrogels during uniaxial compression, but QN hydrogel did suffer damage during compression.