Nature Nanotechnology, Vol.12, No.1, 61-66, 2017
A dressed spin qubit in silicon
Coherent dressing of a quantum two-level system provides access to a new quantum system with improved properties-a different and easily tunable level splitting, faster control and longer coherence times. In our work we investigate the properties of the dressed, donor-bound electron spin in silicon, and assess its potential as a quantum bit in scalable architectures. The two dressed spin-polariton levels constitute a quantum bit that can be coherently driven with an oscillating magnetic field, an oscillating electric field, frequency modulation of the driving field or a simple detuning pulse. We measure coherence times of T-2 rho(star) = 2.4 ms and T-2 rho(Hahn) = 9ms, one order of magnitude longer than those of the undressed spin. Furthermore, the use of the dressed states enables coherent coupling of the solid-state spins to electric fields and mechanical oscillations.