Polymer Bulletin, Vol.74, No.1, 213-227, 2017
Quantification of silane grafting efficacy, weak IR vibration bands and percentage crystallinity in post e-beam irradiated UHMWPE
Vinyl-tri-methoxy silane (VTMS) and vinyl-tri-ethoxy silane (VTES) were grafted onto ultra-high molecular weight polyethylene (UHMWPE) by irradiating the UHMWPE/silane hybrids with e-beam. The samples were irradiated under high moisture contents for total dose values of 30, 65 and 100 kGy, respectively. The synergistic effect of silane and irradiation on the grafting efficacy, concentration of weak bonds like trans-vinylene (-CH=CH-) and vinyl (-CH=CH2) and percentage values of crystallinity were studied using FTIR spectroscopy. For the estimation of grafting reactions efficiency, absorption due to characteristic infrared absorption bands of -Si-CH- in the region similar to 800 cm(-1) was monitored and found that grafting efficacy of VTMS on UHMWPE was higher as compared to VTES and increased with irradiation. The relative amounts of grafting extension (R) for 100 kGy irradiated UHMWPE/VTMS and UHMWPE/VTES hybrids were found to increase 20 and 15 %, respectively. The concentration of trans-vinylene in UHMWPE was found to increase from 0.015 to 0.035 mmol/l due to synergistic effects of silane and irradiation. Moreover, crystallinity of UHWMPE was found to decrease from 65 to 55 % due to the abovementioned synergistic effects which was also confirmed with DSC tests. Furthermore, oxidation index values were measured to confirm the efficacy of silane as free radical quencher via silane grafting extension reactions.