화학공학소재연구정보센터
Powder Technology, Vol.305, 602-608, 2017
Time characteristics of dust collection and particle classification performance of a cyclone
Dust collection plants are widely used in various industrial sectors to collect, transport, and separate dust and solid particles from air and process gases. The dust collection and particle classification performance of the cyclones in such plants is therefore of considerable importance. However, the time characteristics of the performance remain poorly understood. In this study, we measured the dust collection efficiency, partial separation efficiency, and pressure drop of a cyclone using a real powder with different particle diameters. These results were compared with those from a particle tracking numerical simulation of the dust collection process. We found that the dust collection efficiency decreases by approximately 10% over the first 60 min of operation, and then remains constant. A similar trend was observed in the pressure drop. The numerical results for the partial separation efficiency diverge from the experimentally measured values. This is believed to be because the numerical model does not consider the effect of particle motion on the flow, and therefore cannot replicate the reduction in velocity of the swirling flow resulting from an increase in the number of particles. The data reported in this study will enable improved cyclone designs for large-scale dust collection, and also highlight the need for improved numerical techniques to accurately simulate the time characteristics of particles and flow in a cyclone. (C) 2016 Elsevier B.V. All rights reserved.