Macromolecular Research, Vol.25, No.4, 311-316, April, 2017
Analysis of Electrical and Thermal Conductivities of Polyethersulfone-Graphite Based Hybrid Nanocomposites
E-mail:
Polyethersulfone (PES)-7 wt% graphite- x wt% filler (carbon black (CB), carbon nanofiber (CNF), expanded graphite (ExGr)) hybrid composites are synthesized by solution blending route. The electrical percolation threshold in hybrid composites varies exponentially with the aspect ratio of the second conducting filler. The aspect ratio of the second conducting filler has been found to vary in the order CB < CNF < ExGr. The percolation threshold is identified at 0.05 wt%, 0.4 wt%, 1.3 wt% for ExGr, CNF and CB added PES-7 wt% graphite composites. Through plane thermal conductivity of PES-x wt% graphite-y wt% CB (x=10, 20, 30, 40, 50, 60, y=0, 3, 7) hybrid composites has been found to increase with the addition of CB. Thermal conductivity has been increased to 0.42 W/m-K when 7 wt% CB is added to PES-60 wt% graphite from 0.2 W/m-K. Reduction of interparticular distance with the increased loading of CB facilitates better thermal transport. Aspect ratios of second conducting fillers have been found out from transmission electron microscopy and scanning electron microscopy analysis.
Keywords:polymer composites;electrical conductivity;thermal conductivity;percolation threshold;graphite nanosheets
- Al-Saleh MH, Synth. Met., 205, 78 (2015)
- Phan CH, Mariatti M, Koh YH,, J. Magn. Magn. Mater., 401, 472 (2016)
- Mahala P, Kumar K, Nayak S, Behura S, Dhanavantri C, Jani O, Superlattices Microstruct., 92, 366 (2016)
- Planes E, Flandin L, Alberola N, Energy Procedia, 20, 311 (2012)
- Taherian R, J. Power Sources, 265, 370 (2014)
- Radhakrishnan S, Siju CR, Mahanta D, Patil S, Madras G, Electrochim. Acta, 54(4), 1249 (2009)
- Wolfgang B, Josef ZK, Compos. Sci. Technol., 69, 1486 (2009)
- van den Brink J, Nat. Nanotechnol., 2(4), 199 (2007)
- Cardoso P, Silva J, Moreira JA, Klosterman D, van Hattum FWJ, Simoes R, Lanceros-Mendez S, Phys. Lett. A, 376, 3290 (2012)
- Silva J, Ribeiro S, Lanceros-Mendez S, Simoes R, Compos. Sci. Technol., 71, 643 (2011)
- Lee JH, Lee JS, Kuila T, Kim NH, Jung D, Composites: Part B: Eng., 51, 98 (2013)
- Radhakrishnan S, Ramanujam BTS, Adhikari A, Sivaram S, J. Power Sources, 163(2), 702 (2007)
- Zhang ZM, Shehzad K, Zha JW, Mujahid A, Hussain T, Nie J, Shi CY, Compos. Sci. Technol., 72, 28 (2011)
- Eken AE, Tozzi EJ, Klingenberg DJ, Bauhofer W, Polymer, 53(20), 4493 (2012)
- Mikdam A, Makradi A, Ahzi S, Garmestani H, Li DS, Remond Y, Compos. Sci. Technol., 70, 510 (2010)
- Ramanujam BTS, Radhakrishnan S, Thermoplastic J, Compos. Mater., 28, 835 (2015)
- Ramanujam BTS, Radhakrishnan S, Deshpande SD, Thermoplast J. Compos. Mater., DOI:10.1177/0892705715614063 (2015).
- Han Z, Fina A, Prog. Polym. Sci, 36, 914 (2016)
- Zhao YH, Zhang YF, Bai SL, Compos. Pt. A-Appl. Sci. Manuf., 85, 148 (2016)
- Cui W, Du F, Zhao J, Zhang W, Yang Y, Xie X, Mai YW, Carbon, 49, 495 (2011)
- Teng CC, Ma CCM, Chiou KC, Lee TM, Shih YF, Mater. Chem. Phys., 126(3), 722 (2011)
- Ramanujam BTS, Radhakrishnan S, Deshpande SD, Thermoplast J. Compos. Mater., doi:10.1177/0892705716646420 (2016).
- Ramanujam BTS, Mahale R, Radhakrishnan S, Compos. Sci. Technol., 70, 211 (2010)
- Ren PG, Di YY, Zhang Q, Li L, Pang H, Li ZM, Macromol. Mater. Eng., 297, 37 (2012)
- Fan ZJ, Zheng C, Wei T, Zhang YC, Luo GL, Polym. Eng. Sci., 49(10), 2041 (2009)
- Wei T, Song L, Zheng C, Wang K, Yan J, Shao B, Fan ZJ, Mater. Lett., 64, 2376 (2010)
- Cui CH, Pang H, Yan DX, Jia LC, Jiang X, Lei J, Li ZM, RSC Adv., 5, 61318 (2015)
- Ramanujam BTS, Radhakrishnan S, Int. J. Plast. Technol., 14, 37 (2010)