화학공학소재연구정보센터
Applied Catalysis B: Environmental, Vol.208, 148-160, 2017
Bandgap-engineered quaternary MxBi2-xTi2O7 (M: Fe, Mn) semiconductor nanoparticles: Solution combustion synthesis, characterization, and photocatalysis
Ternary and quaternary metal oxides form a rapidly emerging class of new functional materials tackling the grand challenge of efficient solar energy harvesting. Currently the main interest is devoted to the characteristics of these materials and little consideration has been given to their preparation. Solution combustion synthesis (SCS) is considered a green and sustainable alternative to the widely employed energy-and/or time-consuming synthesis methods. In this study, SCS was employed to prepare Bi2Ti2O7 and to perform bandgap engineering through foreign ion (Fe, Mn) incorporation. The synthesized materials were characterized by powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, diffuse reflectance UV-vis and Raman spectroscopy, and surface area determination via N-2 adsorption. We found that nanocrystalline materials were formed during the SCS synthesis. Further, the phase composition of these materials and the amount of the foreign metal ions incorporated in the parent structure, could be effectively controlled. Consequently, the SCS technique provided a simple and reliable tool for bandgap engineering. The photocatalytic activity of the materials was tested through methyl orange degradation, and the intrinsic photocatalytic activity of the various samples were compared after deconvoluting the effect of their vastly different specific surface areas. (C) 2017 Elsevier B.V. All rights reserved.