Applied Surface Science, Vol.400, 110-117, 2017
Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO2-host by Pb-implantation: XPS-and-DFT characterization
The results of combined experimental and theoretical study of substitutional and clustering effects in the structure of Pb-doped TiO2-hosts (bulk ceramics and thin-film morphologies) are presented. Pb-doping of the bulk and thin-film titanium dioxide was made with the help of pulsed ion-implantation without posterior tempering (Electronic Structure Modulation Mode). The X-ray photoelectron spectroscopy (XPS) qualification of core-levels and valence bands and Density-Functional Theory (DFT) calculations were employed in order to study the yielded electronic structure of Pb-ion modulated TiO2 host-matrices. The combined XPS-and-DFT analysis has agreed definitely with the scenario of the implantation stimulated appearance of PbO-like structures in the bulk morphology of TiO2:Pb, whereas in thin-film morphology the PbO2-like structure becomes dominating, essentially contributing weak O/Pb bonding (PbxOy defect clusters). The crucial role of the oxygen hollow-type vacancies for the process of Pb-impurity "insertion" into the structure of bulk TiO2 was pointed out employing DFT-based theoretical background. Both experiment and theory established clearly the final electronic structure re-arrangement of the bulk and thin-film morphologies of TiO2 because of the Pb-modulated deformation and shift of the initial Valence Base-Band Width about I eV up. (C) 2016 Elsevier B.V. All rights reserved.