화학공학소재연구정보센터
Energy, Vol.120, 431-440, 2017
Performance characteristics of a horizontal axis turbine with fusion winglet
Any technique or method that can improve the efficiency in exploiting renewable wind or marine current energy has got a great significance today. It has been reported that adding a winglet at the tip of the rotor blades on a horizontal axis wind turbine can increase its power performance. The purpose of this paper is to adopt a numerical method to investigate the effects of different winglet configurations on turbine performance, especially focusing on the direction for the winglet tip to point towards (the suction side, pressure side or both sides of the main blade). The results show that the new design of an integrated fusion winglet proposed in this paper can generally improve the main blade's power producing ability, which is further enhanced with the increase of turbine's tip speed ratio with a maximum power augmentation of about 3.96%. No matter which direction the winglet tip faces, the installation angle of the winglet should match well with the real angle of incoming flow. As a whole, the turbine with winglet of two tips facing to both sides of the main blade can produce much more power than the one of winglet configuration whose tip faces only one side for different blade hub pitch angles and vast majority of tip speed ratios. The working principle behind the winglet in improving turbine performance may be that it can block the downwash fluid easily flowing around the tip section of the main blade from the pressure side to suction side, and hence diffuse and spread out the tip vortex. As a result, it finally decreases the energy loss. Besides, the relative projected rotor area in incoming flow direction will also be reduced due to the addition of the winglet, which is also helpful to turbine's power coefficient. (C) 2016 Elsevier Ltd. All rights reserved.