Energy, Vol.122, 144-158, 2017
Evaluation of low-pressure flooded evaporator performance for adsorption chillers
In an adsorption chiller, the refrigerant (water) operating pressure is low (0.5-5 kPa) and the cooling power generation of a flooded evaporator is affected by the height of water column. To resolve this issue, we experimentally investigate the performance of a flooded evaporator as a function of water height. The results show an optimum water height equal to 80% of the tube diameter leading to achieve the highest cooling power. Under this condition, the internal and external thermal resistances on the inside and outside of the evaporator tubes account for up to 73% of the overall thermal resistance. To reduce the internal thermal resistance, twisted and Z-type turbulent flow generators are incorporated into the evaporator tubes. The evaporator cooling power shows an increase by 12% and 58% when twisted tape and Z-type turbulators are used at a cost of an increase in the internal pressure drop by 2.5 and 14.5 times, respectively. The twisted tape and Z-type turbulators improve the average specific cooling power of the adsorption chiller by 9% and 47%, respectively. To reduce the external thermal resistance, the outside surface of the evaporator tubes is coated with porous copper. The coated evaporator increases the overall heat transfer coefficient by 1.4 times and improves the specific cooling power of the adsorption chiller by 48% compared to the uncoated tubes. (C) 2017 Elsevier Ltd. All rights reserved.
Keywords:Adsorption chiller;Flooded evaporator;Thermal resistance;Turbulent flow generator;Copper coating;Specific cooling power