IEEE Transactions on Energy Conversion, Vol.32, No.1, 244-256, 2017
The Harmonic Order Tracking Analysis Method for the Fault Diagnosis in Induction Motors Under Time-Varying Conditions
This paper introduces a new approach for improving the fault diagnosis in induction motors under time-varying conditions. A significant amount of published approaches in this field rely on representing the stator current in the time-frequency domain, and identifying the characteristic signatures that each type of fault generates in this domain. However, time-frequency transforms produce three-dimensional (3-D) representations, very costly in terms of storage and processing resources. Moreover, the identification and evaluation of the fault components in the time-frequency plane requires a skilled staff or advanced pattern detection algorithms. The proposed methodology solves these problem by transforming the complex 3-D spectrograms supplied by time-frequency tools into simple x-y graphs, similar to conventional Fourier spectra. These graphs display a unique pattern for each type of fault, even under supply or load time-varying conditions, making easy and reliable the diagnostic decision even for nonskilled staff. Moreover, the resulting patterns can be condensed in a very small dataset, reducing greatly the storage or transmission requirements regarding to conventional spectrograms. The proposed method is an extension to nonstationary conditions of the harmonic order tracking approach. It is introduced theoretically and validated experimentally by using the commercial induction motors feed through electronic converters.
Keywords:Broken rotor bar detection;condition monitoring;fault diagnosis;Fourier transforms;harmonic order tracking analysis;Hilbert transforms;induction machines;motor-current signature analysis;signal processing;transient time-frequency distributions