International Journal of Hydrogen Energy, Vol.42, No.4, 2327-2337, 2017
[email protected] functional cathode material for solid oxide fuel cell application
A novel nanocomposite functional cathode material [email protected] Gd0.20O2-delta is synthesized by two-step autocombustion method for the use in solid oxide fuel cell in the temperature regime <= 800 degrees C. The calcined powder is characterized by XRD, UV-VIS, Raman spectroscopy and transmission electron microscopy for the evaluation of crystal structure, band gap, particle size and elemental distribution in support of such functional material. An interpenetrating network of LSFC surrounding the CoCGO phase is revealed by HAADF-STEM study. It exhibits high electrical conductivity (260 S cm(-1)) and low electrode polarization (0.05 Omega cm(2)) at 800 degrees C. Incorporating LSFC@CoCGO as cathode onto Ni-YSZ anode-supported cell using YSZ electrolyte and CoCGO as the buffer layer results high current density 2.88 A cm(-2) (at 0.7 V) at 800 degrees C and imparts excellent stability (<= 1%) at constant load of 0.5 A cm(-2) and 1 A cm(-2) upto 240 h. The stability of the performance is tried to correlate with the modified cathode materials. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Keywords:LSFC@CoCGO nanocomposite;cathode;Autocombustion Solid oxide fuel cell;Electrochemical performance;Cell stability