Journal of Adhesion, Vol.93, No.5, 389-411, 2017
Strain energy release rate based damage analysis of functionally graded adhesively bonded tubular lap joint of laminated FRP composites
Strain energy release rate (SERR) based damage analyses of functionally graded adhesively bonded tubular lap joints of laminated fiber reinforced plastic (FRP) composites under varied loadings have been studied using three-dimensional geometrically non-linear finite element (FE) analyses. FE simulations have been carried out when a tubular joint is subjected to axial and pressure loadings. SERR is utilized as the characterizing and governing parameter for assessing damages emanating from the critical location. Individual and total SERR over the damage front have been computed using modified crack closure integral (MCCI) based on the concept of linear elastic fracture mechanics. Results reveal that damage initiation locations in tubular joints subjected to axial and pressure loadings are entirely different. Furthermore, modes responsible for propagation of such damages in tubular joints under axial and pressure loadings are also different. Based on the FE simulations, tubular joints under pressure loading are found to be more vulnerable for damage initiation and its propagation. Furthermore, the damage propagation behavior of tubular joints with pre-embedded damages at the critical location has been compared between conventional mono-modulus adhesives and functionally graded adhesives with appropriate material gradation profile. Results indicate that material gradient profile of the adhesive layer offers excellent reduction in SERR for shorter interfacial failure lengths in tubular joints under axial loading which is desired to delay the damage growth. Improved crack growth resistance in the joint enhances the structural integrity and service life of the tubular joint structure. However, considerable reduction in SERR has not been noticed in the said joint when subjected to pressure loading. Hence, the use of functionally graded adhesive along the bond layer is recommended for the designer/technologist while designing tubular joint under general loading condition.
Keywords:Composites;damage propagation;fracture mechanics;functionally graded adhesive;joint design;MCCI;SERR;tubular joint