Journal of Aerosol Science, Vol.107, 31-40, 2017
Application of corona discharge-generated air ions for filtration of aerosolized virus and inactivation of filtered virus
The effect of corona discharge-generated air ions on the filtration of aerosolized bacteriophage MS2 was studied. A carbon-fiber ionizer was installed upstream of a medium-efficiency air filter to generate air ions, which were used to charge the virus aerosols and increase their filtration efficiency. After the virus aerosols were captured by the filter for a certain time interval, they were exposed to a newly incoming air ion flow. Captured virus particles were detached from the filter by sonication, and their antiviral efficiency due to air ions was calculated by counting the plaque-forming units. The antiviral efficiency increased with ion exposure time and ion concentration. When the concentration of positive air ions was 10(7) ions/cm(3), the antiviral efficiencies were 46.1, 78.8, and 83.7% with exposure times of 15, 30, and 45 min, respectively. When the ionizer was operated in a bipolar mode, the number concentrations of positive and negative ions were 6.6 x 10(6) and 3.4 x 10(6) ions/cm(3), respectively, and the antiviral efficiencies were 64.3, 89.1, and 97.4% with exposure times of 15, 30, and 45 min, respectively. As a quantitative parameter for the performance evaluation of air ions, the susceptibility constant of bacteriophage MS2 to positive, negative, bipolar air ions was calculated as 5.5 x 10(-3), 5.4 x 10(-3) and 9.5 x 10(-3), respectively. These susceptibility constants showed bipolar ion treatment was more effective about 1.7 times than unipolar ion treatment.