- Previous Article
- Next Article
- Table of Contents
Journal of Hazardous Materials, Vol.328, 160-169, 2017
Highly efficient and selective removal of trace lead from aqueous solutions by hollow mesoporous silica loaded with molecularly imprinted polymers
A novel type of adsorbent for the selective recognition and adsorption of trace Pb2+ from aqueous solutions has been successfully constructed simply by grafting molecularly imprinted polymers (MIPs) onto hollow mesoporous silica (HMS). Attractively, the HMS loaded with MIPs (H-MIPs) exhibits a fast adsorption kinetics, marked adsorption capacity of 40.52 mg/g and extremely high selectivity toward Pb2+ over Cu2+, Zn2+, Co2+, Mn2+ and Ni2+, and the selectivity coefficients have been determined to be as high as 50. Moreover, such high adsorptive capability and selectivity were retained for at least 6 runs, indicating the stability and reusability of H-MIPs. Lead ion contaminants in real water samples were successfully concentrated and approximately 100% recovered using H-MIPs. Theoretical analysis shows that the adsorption process of H-MIPs follows the pseudo-second-order kinetic and Langmuir isotherm models. These demonstrate that H-MIPs are greatly potential for the rapid and highly efficient removal of trace Pb2+ ions in complicated matrices. (C) 2017 Published by Elsevier B.V.