Journal of Hazardous Materials, Vol.329, 22-29, 2017
Silicon carbide recovered from photovoltaic industry waste as photocatalysts for hydrogen production
In recent years, the focus on creating a dependable and efficient means to recycle or recover the valuable parts from the waste material has drawn significantly attention as an environmentally friendly way to deal with the industrial wastes. The silicon carbide (SiC) crystalline is one of reusable material in the slurry wastes generated during wafer slicing. Here we report the use of recovered SiC from the slurry wastes as photocatalysts to produce hydrogen in the presence of Na2SO3-Na2S as electron donor. The recovered SiC were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy spectra (XPS), UV-vis (UV-vis) spectroscopy, and photoluminescence (PL) spectroscopy. The morphology of SiC loaded with 1 wt% Pt as cocatalyst by thermal-reduction method was observed by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM). The experimental results reveal that the recovered SiC is mainly consist of 3C-SiC, 6H-SiC and some silicon oxycarbides on the surface of the SiC. The highest hydrogen production rate is 191.8 mu mol h(-1) g(-1). This study provides a way to recycle crystalline SiC from the discharged waste in the photovoltaic industry and reuse it as photocatalyst to yield hydrogen with the advantage of low energy consumption, low pollution and easy operation. (C) 2017 Elsevier B.V. All rights reserved.