Journal of Physical Chemistry A, Vol.121, No.5, 1069-1077, 2017
Clustering of Uracil Molecules on Ice Nanoparticles
We generate a molecular beam of ice nano particles (H2O)(N), N approximate to 130-220, which picks up several individual gas phase uracil' (U) or 5-bromouracil (BrU) molecules. The mass spectra of the doped nanoparticles prove that the uracil and bromouracil molecules coagulate to clusters on the ice nanoparticles. Calculations of U and BrU monomers and dimers on the ice nanoparticles provide theoretical support for the cluster formation. The (U)(m) H+ and (BrU)(m)H+ intensity dependencies on m extracted from the mass spectra suggest a smaller tendency of BrU to coagulate compared to U, which is substantiated by a lower mobility of bromouracil on the ice surface. The hydrated U-m.(H2O) H-n(+) series are also reported and discussed. On the basis of comparison with the previous experiments, we suggest that the observed propensity for aggregation on ice nanoparticles is a more general trend for biomolecules forming strong hydrogen bonds. This, together with their mobility, leads to their coagulation on ice nanopartides which is an important aspect for astrochemistry.