화학공학소재연구정보센터
Langmuir, Vol.33, No.10, 2504-2513, 2017
In Situ Electrochemical-AFM and Cluster-Ion-Profiled XPS Characterization of an Insulating Polymeric Membrane as a Substrate for Immobilizing Biomolecules
The electrochemical oxidation of ortho-aminophenol (oAP) by cyclic voltammetry (CV), on platinum substrates in neutral solution, produces a polymeric film (PoAP) that grows to a limiting thickness of about 10 nm. The insulating film has potential use as a bioimmobilizing substrate, with its specificity depending on the orientation of its molecular chains. Prior investigations suggest that the film consists of alternating quinoneimine and oAP units, progressively filling all the platinum sites during the electrosynthesis. This work concerns the evaluation of the growth orientation of PoAP chains, which until now was deduced only from indirect evidence. Atomic force microscopy (AFM) has been used in situ with an electrochemical cell so that PoAP deposition on a specific area can be observed, thus avoiding any surface reorganization during ex situ transport. In parallel with microscopy, XPS experiments have been performed using cluster ion beams to profile this film, which is exceptionally thin, without damage while retaining molecular information.