화학공학소재연구정보센터
Langmuir, Vol.33, No.13, 3253-3261, 2017
Tracing the Surfactant-Mediated Nucleation, Growth, and Superpacking of Gold Supercrystals Using Time and Spatially Resolved X-ray Scattering
The nucleation and growth-process of gold supercrystals in a surfactant diffusion approach is followed by simultaneous small-and wide-angle X-ray scattering (SAXS/ WAXS), supplemented with scanning electron microscopy. The results indicate that supercrystal nucleation can be activated efficiently upon placing a concentrated surfactant solution of a nematic phase on top of a gold nanocrystal solution droplet trapped in the middle of a vertically oriented capillary tube. Supercrystal nuclei comprised of tens of gold nanocubes are observed nearly instantaneously in the broadened liquid liquid interface zone of a steep gradient of surfactant concentration, revealing a diffusion-kinetics-controlled nucleation process. Once formed, the nuclei can sediment into the naoncrystal zone below, and grow efficiently into cubic or tetragonal supercrystals of similar to 1 size within similar to 100 min. Supercrystals matured during sedimentation in the capillary can accumulate and face-to-face align at the bottom liquid air interface of the nanocrystal droplet. This is followed by superpacking of the supercrystals into highly oriented hierarchical sheets, with a huge number of gold nanocubes aligned for largely coherent crystallographic orientations.