- Previous Article
- Next Article
- Table of Contents
Plasma Chemistry and Plasma Processing, Vol.37, No.3, 877-895, 2017
Numerical Simulation of Nonequilibrium Species Diffusion in a Low-Power Nitrogen-Hydrogen Arcjet Thruster
Species distributions in a low-power arcjet thruster are investigated using a two-dimensional thermal and chemical nonequilibrium numerical model that incorporates the self-consistent effective binary diffusion coefficient approximation treatment of diffusion. Plasma flows in arcjet thruster with different input mole ratios of nitrogen to hydrogen are modelled. It is found that species separation due to nonequilibrium chemical kinetic processes occurs mainly in the regions where the dissociation and ionization of nitrogen and hydrogen species take place. The enrichment of nitrogen molecules at the fringes of the arc and hydrogen molecules near the anode wall of the thruster occurs mainly because the recombination processes of these two gases occur in different temperature ranges. In the expansion portion of the thruster nozzle, the gas residence times are of the same order as some chemical kinetic processes. Comparison between the nitrogen and hydrogen species profiles at the constrictor and thruster exit shows that the recombination of hydrogen ions and atoms are dominant kinetic processes near the thruster centreline, while the chemical reactions of nitrogen species are almost frozen in the high speed flow. The effects of temperature and pressure gradients on the species diffusion inside the arcjet thruster are also presented, with thermal diffusion found to have a much larger influence than pressure diffusion.