Polymer Bulletin, Vol.74, No.4, 1103-1119, 2017
Development of nano-channel single crystals and verification of their structures by small angle X-ray scattering
Nano-channel single crystals were developed via consecutive growth of various polymer single-crystal channels comprising homo and block copolymers by self-seeding method. Poly(ethylene glycol)-b-polystyrene (PEG-b-PS) and poly(ethylene glycol)-b-poly(methyl methacrylate) (PEG-b-PMMA) block copolymers were synthesized by atom transfer radical polymerization. Self-seeding temperature, concentration, and crystallization time affected the width of the channels. This might provide a new way to investigate directional absorption, diffusion, and immobilization of biomacromolecules on the surface. The crystalline blocks of PEG-b-PS and PEG-b-PMMA diblock copolymers were similar, therefore, the continuity of channel-wire growth was guaranteed. Development of complete square channels next to the channels covered with high molecular weight brushes was infeasible. It was ascribed to a higher hindrance of primarily existing tethered chains on the single-crystal channel. Finally, the consecutive channel-wire single crystals were compared with single-step-grown pyramidal and conic structures. These multilayer crystals grew spirally and formed non-flat channels. The structure and morphology of different crystalline channels were detected by atomic force microscopy (AFM) and small angle X-ray scattering (SAXS). In this work, for the first time, the SAXS data of channel-wire single crystals were reported and they were compared by non-flat channel-like crystals. A profound investigation of PEG-b-PS, PEG-b-PMMA copolymers and PEG homopolymer channel-wire single crystals by SAXS and their comparison with AFM data was a novel work in the field of single-crystal engineering.