화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.29, No.2, 87-100, May, 2017
A two-layered suspension (particle-fluid) model for non-Newtonian fluid flow in a catheterized arterial stenosis with slip condition at the wall of stenosed artery
E-mail:
The primary concern of the present investigation is to study blood flow in a porous catheterized artery with an axially asymmetric and radially symmetric stenosis (constriction). In the present study, blood is characterized as a two-fluid system containing a cell-rich zone of suspension of blood cells described to be a particle-fluid suspension (Jeffrey fluid) and a cell-free plasma (Newtonian fluid) layer near the wall. The systematic expressions for flow characteristics such as fluid phase and particle phase velocities, flow rate, wall shear stress, resistive force, and frictional forces on walls of arterial stenosis and catheter are derived. It is recorded that the wall shear stress, flow resistance, and frictional forces are found to be increased with catheter size, red cell concentration, and slip parameter. When blood obeys the law of constitutive equation of a Jeffrey fluid, the flowing blood experiences lesser wall shear stress, flow resistance and frictional forces as compared to the case of blood being categorized as a Newtonian fluid. The increase in Darcy number, blood rheology as Jeffrey fluid, and the presence of peripheral plasma layer near the wall serves to reduce substantially the values of the flow characteristics (wall shear stress, flow resistance and frictional forces).
  1. Brunn P, Rheol. Acta, 14, 1039 (1975)
  2. Bugliarello G, Sevilla J, Biorhelogy, 7, 85 (1970)
  3. Bugliarello G, Hayden JW, Trans. Soc. Rheol., 7, 209 (1963)
  4. Caro CG, Clin. Hemorheol. Microcirc., 2, 131 (1982)
  5. Caro CG, Pedley TJ, Schroter RC, Seed WA, 1978, The Mechanics of the Circulation, Cambridge University Press, New York.
  6. Chakraborty US, Biswas D, Pau M, Korea-Aust. Rheol. J., 23, 25 (2011)
  7. Charm SE, Kurland GS, 1974, Blood Flow and Microcirculation, John Wiley & Sons, Inc., New York.
  8. Chaturani P, Kaloni PN, Biorheology, 13, 243 (1976)
  9. Chaturani P, Ponalagusamy R, 1982, A two-layered model for blood flow through stenosed arteries, 11th National Conference on Fluid Mechanics and Fluid Power, Hydrabad, India, 16-22.
  10. Chaturani P, Ponalagusamy R, Biorheology, 22, 521 (1985)
  11. Chaturani P, Ponalagusamy R, 1986a, Dilatancy effects of blood on flow through arterial stenosis, 28th Congress of Indian Society of Theoretical and Applied Mechanics, 87-96.
  12. Chaturani P, Ponalagusamy R, Biorheology, 23, 499 (1986)
  13. Cokelet GR, 1972, The Rheology of Human Blood: In Biomechanics, Prentice-Hall, New Jersey.
  14. Dash RK, Mehta KN, Int. J. Eng. Sci., 34, 1145 (1996)
  15. Deshpande MD, Giddens DP, Mabon RF, J. Biomech., 9, 165 (1979)
  16. Drew DA, Arch. Ration. Mech. Anal., 62, 149 (1976)
  17. Drew DA, Phys. Fluids, 22, 2081 (1979)
  18. Forrester JH, Young DF, J. Biomech., 3, 297 (1970)
  19. Ganz P, Abben R, Friedman PL, Granic JD, Barry WH, Levin DC, Am. J. Cardiol., 55, 910 (1985)
  20. Haynes RH, AAPG Bull., 198, 1193 (1960)
  21. Jyothi KL, Devaki P, Sreenadh S, Int. J. Math. Arch, 4, 75 (2013)
  22. Macdonald DA, J. Biomech., 12, 13 (1979)
  23. Mann FG, Herrick JF, Essex H, Blades EJ, Surgery, 4, 249 (1938)
  24. Mekheimer KS, El Kot MA, Chem. Eng. Commun., 197(9), 1195 (2010)
  25. Ponalagusamy R, 1986, Blood Flow Through Stenosed Tube, Ph.D. Thesis, Indian Institute of Technology.
  26. Ponalagusamy R, J. Appl. Sci., 7, 1071 (2007)
  27. Ponalagusamy R, J. Frankl. Inst., 349, 2861 (2012)
  28. Ponalagusamy R, 2013, Pulsatile flow of Herschel-Bulkley fluid in tapered blood vessels, 2013 International Conference on Scientific Computing, Las Vegas, USA, 80-86.
  29. Ponalagusamy R, Eur. Phys. J. Plus, 131, 1 (2016)
  30. Ponalagusamy R, Korea-Aust. Rheol. J., 28(3), 217 (2016)
  31. Ponalagusamy R, Selvi RT, J. Frankl. Inst., 348, 2308 (2011)
  32. Ponalagusamy R, Selvi RT, Meccanica, 48, 2427 (2013)
  33. Ponalagusamy R, Selvi RT, Meccanica, 50, 927 (2015)
  34. Rao KS, Rao PK, Int. J. Math. Arch., 3, 4692 (2012)
  35. Saffman PG, Stud. Appl. Math., 50, 93 (1971)
  36. Santhosh N, Radhakrishnamacharya G, Int. J. Eng. Math., 2014, 713 (2014)
  37. Sarkar A, Jayaraman G, J. Biomech., 31, 781 (1998)
  38. Sharma MK, Bansal K, Bansal S, Korea-Aust. Rheol. J., 24(3), 181 (2012)
  39. Shukla JB, Parihar RS, Gupta SP, Biorheology, 17, 403 (1980)
  40. Shukla JB, Parihar RS, Gupta SP, Bull. Math. Biol., 42, 797 (1980)
  41. Srinivasacharya D, Srikanth D, Int. J. Biomath., 5, 125001 (2012)
  42. Srivastava VP, J. Pure Appl. Math., 33, 1353 (2002)
  43. Srivastava VP, Sexena M, Math. Biosci., 139, 79 (1997)
  44. Srivastava VP, Rastogi R, Comput. Math. Appl., 59, 1377 (2010)
  45. Srivastava VP, Rastogi R, Vishnoi R, Comput. Math. Appl., 60, 432 (2010)
  46. Srivastava VP, Srivastava R, Comput. Math. Appl., 58, 227 (2009)
  47. Tam CKW, J. Fluid Mech., 38, 537 (1969)
  48. Young DF, J. Eng. Ind.-Trans. AMSE, 90, 248 (1968)
  49. Young DF, J. Biomech. Eng. -Trans. ASME, 101, 157 (1979)
  50. Young DF, Tsai FY, J. Biomech., 6, 395 (1973)