Polymer(Korea), Vol.41, No.3, 460-464, May, 2017
무수 말레인산이 그라프트된 폴리프로필렌을 상용화제로 사용한 아이소탁틱 폴리프로필렌/세균성 셀룰로오스 복합체의 기계적/유변학적 물성
Mechanical and Rheological Properties of Isotactic Polypropylene/Bacterial Cellulose Composites: Maleic Anhydride Grafted Polypropylene as a Compatilizer
E-mail:
To improve the mechanical performance of isotactic polypropylene (iPP), the iPP/bacterial cellulose (BC) composites were prepared. The tensile and impact strength of the composites were maximized (38.21MPa and 2.812 KJ/m2) when maleic anhydride grafted polypropylene (MAPP) content was 7 wt%, the tensile modulus was increased with the higher MAPP content and the maximum value was 1858.39 MPa. Compared with pure iPP, the tensile strength, impact strength and tensile modulus increased by 6.32 MPa, 0.75 KJ/m2, and 279.68 MPa, respectively. Compared with the control group (the sample which added BC but no MAPP added), the tensile strength, impact strength and tensile modulus increased by 5.61 MPa, 0.692 KJ/m2, and 11.24 MPa, respectively. Moreover, the elongation at break of the composites was decreased. Besides, the rheological results and SEM photographs indicated that with the addition of MAPP, the compatibility of the composites was improved greatly, which demonstrated the increase of the mechanical properties of the composites.
Keywords:bacterial cellulose;isotactic polypropylene;mechanical and rheological properties;compatibility
- Ikari MJ, Saffer DM, Marone C, J. Geophys. Res., 114, 114 (2009)
- Maiti P, Nam PH, Okamoto M, Hasegawa N, Usuki A, Macromolecules, 35(6), 2042 (2002)
- Wei Z, Chen G, Shi Y, Song P, Zhan M, Zhang W, J. Polym. Res., 19, 1 (2012)
- Joseph PV, Mathew G, Joseph K, Thomas S, Pradeep P, J. Appl. Polym. Sci., 88(3), 602 (2003)
- Avalos-Belmontes F, Ramos-deValle L, Ramirez-Vargas E, Sanchez-Valdes S, Mendez-Nonel J, Zitzumbo-Guzman R, J. Nanomater., 2012, 104 (2012)
- van der Wal A, Nijhof R, Gaymans RJ, Polymer, 40(22), 6031 (1999)
- Luo J, Liang YR, Yang J, Niu H, Dong JY, Han CC, Polymer, 53(12), 2465 (2012)
- Liang JZ, Li RKY, J. Appl. Polym. Sci., 77(2), 409 (2000)
- Choi KW, Lee HS, Kang BC, Yang HC, Polym. Korea, 34, 4 (2010)
- Demir H, Atikler U, Balkose D, Tihminlioglu F, Compos. Pt. A-Appl. Sci. Manuf., 37, 447 (2006)
- Lundquist L, Marque B, Hagstrand PO, Leterrier Y, Manson JA, Compos. Sci. Technol., 63, 137 (2003)
- Laun H, Colloid Polym. Sci., 262, 257 (1984)
- Shubhra QT, Alam A, Quaiyyum M, Thermoplast J. Compos. Mater., 0892705711428659 (2011).
- Huang C, Yang XY, Xiong L, Guo HJ, Luo J, Wang B, Zhang HR, Lin XQ, Chen XD, Appl. Biochem. Biotechnol., 175(3), 1678 (2015)
- Cheng KC, Catchmark JM, Demirci A, Cellulose, 16, 1033 (2009)
- Wan Y, Luo H, He F, Liang H, Huang Y, Li X, Compos. Sci. Technol., 69, 1212 (2009)
- Cai X, Riedl B, Ait-Kadi A, Compos. Pt. A-Appl. Sci. Manuf., 34, 1075 (2003)
- Zheng Q, Du M, Yang BB, Wu G, Polymer, 42(13), 5743 (2001)
- Rhee J, Crist B, Macromolecules, 24, 5663 (1991)
- Singh V, Walsh D, J. Macromol. Sci.-Phys., 25, 65 (1986)
- Akbari B, Bagheri R, J. Nanomater., 2012, 3 (2012)
- Qiu WL, Endo T, Hirotsu T, J. Appl. Polym. Sci., 102(4), 3830 (2006)
- Bettini S, Bicudo A, Augusto I, Antunes L, Morassi P, Condotta R, Bonse B, J. Appl. Polym. Sci., 118, 2840 (2010)
- Islam MR, Beg MD, Gupta A, BioResources, 8, 3753 (2013)
- Zuiderduin WCJ, Westzaan C, Huetink J, Gaymans RJ, Polymer, 44(1), 261 (2003)
- Shumigin D, Tarasova E, Krumme A, Meier P, Mater. Sci., 17, 32 (2011)
- Mohanty S, Verma SK, Nayak SK, Tripathy SS, J. Appl. Polym. Sci., 94(3), 1336 (2004)
- Bigg D, Polym. Eng. Sci., 23, 206 (1983)
- Mohanty S, Nayak SK, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 443, 202 (2007)
- Han CD, Rheology and processing of polymeric materials: Polymer processing, Oxford University Press, USA (2007).
- Hristov VN, Lach R, Grellmann W, Polym. Test, 23, 581 (2004)