화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.3, 490-494, May, 2017
폴리우레탄이 그래프트된 다중벽 탄소나노튜브가 포함된 폴리우레탄 복합소재의 특성
Characteristics of Polyurethane Composites Containing Polyurethane Grafted Multi-walled Carbon Nanotubes
E-mail:
초록
열가소성 폴리우레탄 탄성체(TPU)와 TPU가 그래프트된 다중벽 탄소나노튜브(MWCNT)의 (TPU-g-MWCNT) 복합체를 제조하기 위해 TPU와 이소시아네이트기로 기능화된 MWCNT를 이축 압출기를 사용하여 융 압출하였다. MWCNT에 형성된 이소시아네이트기와 TPU에 존재하는 하이드록실기가 용융 압출 동안 반응하여 TPU-g-MWCNT 가 형성됨을 계면 접착 에너지 변화, 복합체의 기계적 물성 변화 등으로 확인하였다. TPU와 TPU-g-MWCNT 간의 계면 접착 에너지 값이 TPU와 화학 처리 전 MWCNT간의 값에 비해 높았다. 이 결과로 TPU/TPU-g-MWCNT 복합체가 TPU/화학처리 전 MWCNT 복합체보다 향상된 MWCNT 분산과 계면 접착을 나타내었다. 일한 MWCNT 함량에서 TPU/TPU-g-MWCNT 복합체가 TPU/화학처리 전 MWCNT 복합체보다 높은 기계적 강도를 나타내었다.
Thermoplastic polyurethane elastomer (TPU) and multi-walled carbon nanotubes (MWCNTs) functionalized with isocyanate groups were melt mixed in a twin extruder to produce TPU composites containing TPU grafted MWCNTs (TPU-g-MWCNT) by reacting isocyanate groups on MWCNTs with the hydroxyl groups in TPU. Formation of TPU-g-MWCNTs by reactive extrusion was explored as were their resulting properties including interfacial adhesion energies between TPU and MWCNT and mechanical properties of TPU/MWCNT composites. The interfacial adhesion energy of the TPU/TPU-g-MWCNT composite was higher than that of the TPU/pristine MWCNT composite; a result, the TPU/TPU-g-MWCNT composite exhibited a higher level of dispersion of MWCNTs in the TPU matrix and better adhesion at the interface between TPU and MWCNTs than the TPU/pristine MWCNT composite. For a fixed MWCNT content in the composite, the mechanical strength of the TPU/TPU-g-MWCNT composite was higher than those of the corresponding TPU/pristine MWCNT composite.
  1. Sumio I, Nature, 354, 56 (1991)
  2. Wong EW, Sheehan PE, Lieber CM, Science, 277(5334), 1971 (1997)
  3. Coleman JN, Khan U, Blau WJ, Gunko YK, Carbon, 44, 1624 (2006)
  4. Fiedeler B, Gojny FH, Compos. Sci. Technol., 66, 3115 (2006)
  5. Wang X, Jiang Q, Xu W, Cai W, Inoue Y, Zhu Y, Carbon, 53, 145 (2013)
  6. Sperling LH, Introduction to Physical Polymer Science, Wiley & Sons, New York, 1986.
  7. Cho M, Choi CS, Lee SJ, Yoon SW, Koo JC, Lee Y, Polym. Korea, 34(2), 104 (2010)
  8. Potschke P, Fornes TD, Paul DR, Polymer, 43(11), 3247 (2002)
  9. Choi WS, Ryu SH, Colloids Surf., 375, 55 (2011)
  10. Eitan A, Fisher FT, Andrew R, Brinson LC, Schadler LS, Compos. Sci. Technol., 66, 1162 (2006)
  11. Maiti S, Khatua BB, Nanosci. Technol., 11, 8613 (2011)
  12. Guo JX, Liu YJ, Prada-Silvy R, Tan YQ, Azad S, Krause B, Potschke P, Grady BP, J. Polym. Sci. B: Polym. Phys., 52(1), 73 (2014)
  13. Roh SC, Choi EY, Choi YS, Kim CK, Polymer, 55(6), 1527 (2014)
  14. Cho YK, Lee WK, Polym. Korea, 40(3), 439 (2016)
  15. Carrol BJ, J. Colloid Interface Sci., 57, 488 (1976)
  16. Song BH, Bismarck A, Tahhan R, Springer J, J. Colloid Interface Sci., 197(1), 68 (1998)
  17. Young T, Phil. Trans. R. Soc. Lond., 95, 65 (1805)
  18. Busscher HJ ,Van Pelt AWJ, De Jong HP, Arends J, J. Colloid Interface Sci., 95, 23 (1983)