Polymer(Korea), Vol.41, No.3, 524-530, May, 2017
나일론66 복합체의 전자파 차폐 성능 및 물성에 미치는 탄소 필러의 영향
Effects of the Carbon Fillers on the EMI Shielding Performance and Physical Properties of Nylon66 Composites
E-mail:
초록
본 연구에서는 탄소필러의 종류 및 함량에 따라 나일론66/탄소필러 복합체를 제조하였고, 나일론66/탄소필러 복합체의 표면저항, 전자파 차폐 성능, 기계적 물성 그리고 복소점도 등을 고찰하였다. 탄소필러 종류로는 카본블랙(CB), 다중벽 탄소나노튜브(MWCNT), 니켈코팅 탄소섬유(Ni-CF) 등이 사용되었다. 나일론66/탄소필러 복합체는 이축압출기(twin screw extruder)를 이용하여 탄소필러 종류와 함량을 다르게 하여 다이온도 기준으로 280 °C에서 제조하였다. CNT와 CB를 혼합사용할 때 상승효과가 나타남을 표면저항을 이용하여 확인하였다. 전자파 차폐 성능을 기준으로, 40 dB 이상을 만족하는 Ni-CF의 최소 함량은 20 wt%였으며, 나일론66/CNT/CB/Ni-CF 복합체의 가공성 고찰을 위해 동적유변학측정기를 이용하여 복소점도를 측정하였다. 또한 SEM을 이용하여 복합체의 형태학적 특성을 고찰하였다.
In this study, nylon66/carbon filler composites were prepared according to the type and content of carbon filler, the surface resistivity, electromagnetic interference (EMI) shielding performance, and mechanical properties of the composites were investigated. The carbon fillers such as carbon black (CB), multi-walled carbon nanotube (MWCNT), nickel coated carbon fiber (Ni-CF) were used. The nylon66/carbon filler composites with different filler types and filler content were fabricated by using a twin-screw extruder at 280 oC reference of die temperature. Double percolation was certified by surface resistivity when CNT and CB were compounded together in nylon66 matrix. Based on EMI shielding effectiveness, the minimum content of NI-CF was 20 wt% when the EMI shielding effective value has over 40 dB. The complex viscosities of the nylon66/CNT/CB/Ni-CF composites were measured by using a dynamic rheometer to determine the processability of the composite. Also, the morphological properties were investigated by using SEM.
- White DRJ, Duff WG, Don, A handbook series on electromagnetic interference and compatibility, White Consultants, Libraries Australia, 1971
- Shim HB, Seo MK, Park SJ, Polym. Korea, 24(6), 860 (2000)
- Kim YY, Yun J, Lee YS, Kim HI, Carbon Lett., 12, 48 (2011)
- Lee BO, Woo WJ, Song HS, Park HS, Hahm HS, Wu JP, Kim MS, J. Ind. Eng. Chem., 22, 627 (2011)
- Kim YY, Yun J, Kim HI, Lee YS, J. Ind. Eng. Chem., 18(1), 392 (2012)
- Han GY, Song OH, Ahn DG, J. KSPE, 27, 71 (2010)
- Mallick PK, Composites Engineering Handbook, Marcel Dekker, New York, 1997.
- Jang BZ, Advanced Polymer Composites, ASM International, USA, 1994.
- Brydson JA, Plastics Materials, Butterworth Scientific, London, 1982.
- Feit ED, Wilkins CW, Am. Chem. Soc., 19, 107 (1982)
- Vigo TL, Kinzig BJ, Composites Applications, VCH Publishers, New York, 1992.
- Chung DDL, Carbon, 39, 279 (2001)
- Liu Q, Zhang D, Fan T, Gu J, Miyamoto Y, Chen Z, Carbon, 46, 461 (2008)
- Hang Y, Li N, Ma Y, Du F, Li F, He X, Carbon, 45, 1614 (2007)
- Liu Z, Bai G, Huang Y, Ma Y, Li F, Gio T, Carbon, 45, 821 (2007)
- Bhadra S, Singha NK, Khastgir D, Curr. Appl. Phys., 9(2), 396 (2009)
- Bigg DM, Polym. Compos., 8, 1 (1987)
- Kim JG, Chung CH, Lee YS, Appl. Chem., 22, 138 (2010)
- Chae S, Cho B, Hong B, Lee B, Byun H, Appl. Chem. Eng., 21, 1430 (2010)
- Eswaraiah V, Balasubramaniam V, Ramaprabhu S, Royal Soc. Chem., 4, 1258 (2012)
- Gul VE, Structure and properties of conducting Polymer composites, Koninkiike wohrmann BV, Netherlands, 1996.
- Aneli JN, Khananasvili LM, Zaikov GE, Nova Science, 20, 15 (1998)
- Zhang SM, Lin L, Deng H, Gao X, Bilotti E, Peijs T, Zhang Q, Fu Q, Express Polym. Lett., 6, 159 (2012)
- Ma PC, Liu MY, Zhang H, Wang SQ, Wang R, Wang K, ACS Appl. Mater. Inter., 1, 1090 (2009)
- Sumfleth J, Adroher XC, Schulte K, J. Mater. Sci., 44(12), 3241 (2009)
- Heiser JA, King JA, Konell JP, Sutter LL, Polym. Copos., 25, 407 (2004)
- Bushko WC, Stokes VK, Wilson J, Proceedings SPE Annual Technical Conference, 1499 (1999).