화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.27, No.5, 248-254, May, 2017
Fabrication of Graphene Supercapacitors for Flexible Energy Storage
E-mail:
In the present work, graphene powder was synthesized by laser scribing method. The resultant flexible light-scribed graphene is very appropriate for use in micro-supercapacitors. The effect of the laser scribing process in reducing graphene oxide (GO) was investigated. GO was synthesized using a chemical mixture of GO solution; then, it was coated onto a LightScribe DVD disk and laser scribed to reduce GO and create laser-scribed graphene (LSG). The CV curves of pristine rGO at various scan rates showed that the ultimate product possesses the ability to store energy at the supercapacitor level. Charge-discharge curves of pristine rGO at two different current densities indicated that the specific capacitance (Cm) increases due to the reduction of the discharge current density. Finally, the long-term charge-discharge stability of the LSG was plotted and indicates that the specific capacitance decreases very slightly from its primary capacitance of ~10F cm-3 and that the cyclic stability is favorable over 1000 cycles.
  1. Pech D, Brunet M, Durou H, Huang PH, Mochalin V, Gogotsi Y, Taberna PL, Simon P, Nat. Nanotechnol., 5(9), 651 (2010)
  2. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y, Science, 328(5977), 480 (2010)
  3. Patrice S, Gogotsi Y, Nature Mater, 7, 845 (2008)
  4. Mai L, Yang F, Zhao Y, Xu X, Xu L, Luo Y, Nature Commun., 2, 381 (2011)
  5. Sieben JM, Morallon E, Cazorla-Amoros D, Energy, 58, 519 (2013)
  6. Zhang J, Jiang J, Lib H, Zhao XS, Energy Environ. Sci., 4, 4009 (2011)
  7. Yiqing S, Wu Q, Shi G, Energy Environ. Sci., 4, 1113 (2011)
  8. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS, Nature, 442, 282 (2006)
  9. Miller JR, Outlaw RA, Holloway BC, Science, 329(5999), 1637 (2010)
  10. Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498 (2008)
  11. Liua Y, Lib Y, Yanga Y, Wenc Y, Wang M, Scripta Mater., 68, 301 (2013)
  12. Dreyer DR, Park S, Bielawski CW, Ruoff RS, Chem. Soc. Rev., 39, 228 (2010)
  13. Alwarappan S, Liu C, Kumar A, Li C, J. Phys. Chem. C, 114, 12920 (2010)
  14. Kanga X, Wanga J, Wua H, Aksayc IA, Liua J, Lin Y, Biosens. Bioelectron., 25, 901 (2009)
  15. Ratinac KR, Yang W, Gooding JJ, Thordarson P, Braet F, Electroanalysis, 23, 803 (2011)
  16. Chen M, Park C, Meng Z, Zhu L, Choi J, Ghosh T, Kim I, Yang S, Bae M, Zhang F, Oh W, Fullerenes, Nanotubes and Carbon Nanostructures, 21, 525 (2013).
  17. Ates M, Cinar D, Caliskan S, Gecgel U, Uner O, Bayrak Y, Candan I, Fullerenes, Nanotubes and Carbon Nanostructures, 24, 427 (2016).
  18. Ma J, Guo Q, Gao H, Qi X, Fullerenes, Nanotubes and Carbon Nanostructures, 23, 477 (2015).
  19. Yang Y, Fullerenes, Nanotubes and Carbon Nanostructures, 24, 243 (2016).
  20. El-Kady MF, Strong V, Dubin S, Kaner RB, Science, 335(6074), 1326 (2012)
  21. Strong V, Dubin S, El-Kady MF, Lech A, Wang Y, Weiller BH, Kaner RB, ACS Nano, 6, 1395 (2012)
  22. El-Kady M, Kaner RB, ACS Nano, 8, 8725 (2014)
  23. El-Kady M, Kaner RB, Nature Commun, 4, 1475 (2013)
  24. Tian H, Yang Y, Xie D, Cui Y, Mi W, Zhang Y, Ren T, Sci. Rep., 4, 3598 (2014)
  25. Tian H, Li C, Mohammad M, Cui Y, Mi W, Yang Y, Xie D, Ren T, ACS Nano, 8, 5883 (2014)
  26. Tian H, Shu Y, Wang X, Mohammad M, Bie Z, Xie Q, Li C, Mi W, Yang Y, Ren T, Sci. Rep., 5, 8603 (2015)
  27. Tian H, Shu Y, Cui Y, Mi W, Yang Y, Xie D, Ren T, Nanoscale, 6, 699 (2014)
  28. Griffiths K, Dale C, Hedley J, Kowal MD, Kaner RB, Keegan N, Nanoscale, 6, 13613 (2014)
  29. Wen F, Hao C, Xiang J, Wang L, Hou H, Su Z, Hu W, Liu Z, Carbon, 75, 236 (2014)
  30. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD, Langmuir, 24(19), 10560 (2008)
  31. Li ZJ, Liu P, Yun GQ, Shi K, Lv XW, Li K, Xing JH, Yang BC, Energy, 69, 266 (2014)
  32. Chen L, Zhang X, Liang H, Kong M, Guan Q, Chen P, Wu Z, Yu S, ACS Nano, 6, 7092 (2012)