Applied Chemistry for Engineering, Vol.28, No.3, 326-331, June, 2017
산화-환원 전처리에 따른 Ni/SiO2 촉매의 캐스터오일 수소화
Effect of Oxidation-reduction Pretreatment for the Hydrogenation of Caster Oil over Ni/SiO2 Catalyst
E-mail:
초록
캐스터오일은 수소화반응을 통해 계면활성제의 중간체 등 유용한 화학산업의 원료로 활용 가능하다. 본 연구에서는 캐스터오일의 수소화용 니켈촉매의 제조조건과 전처리 조건에 대한 영향을 연구하였다. 니켈촉매는 침전제와 pH를 다르게 하여 실리카 담체상에 침전법으로 담지되었고, 다시 산화와 환원의 반복된 전처리를 행하였다. 니켈촉매의 활성은 캐스터오일의 요오드 가를 측정하여 비교하였고, 니켈촉매의 분산도는 XRD, BET, TEM을 통하여 분석하였다. 니켈촉매의 활성을 CO산화반응실험을 통하여도 비교하였다. 산화와 환원 사이클의 반복에 의해 니켈의 재분산이 실리카 상에서 발생하였고, 이것이 캐스터오일 수소화반응 활성을 증진시키는데 기여하였다.
Castor oil can be used as a useful raw material for chemical industries such as intermediates of surfactants through hydrogenation reaction. In this study, effects of the preparation method and pretreatment condition on the nickel catalyst for the hydrogenation of castor oil were investigated. The nickel catalyst was supported on the silica carrier by the precipitation method with different Ni contents, solution pH values, and precipitants. Repeated pretreatments of oxidation and reduction cycles were then carried out. The activity of the nickel catalyst was measured by comparing the iodine value of the castor oil. The dispersion of nickel on the catalyst was analyzed by X-ray diffraction (XRD), N2 adsorption desorption, and transmission electron microscopy (TEM). The activity of nickel catalyst was also compared by CO oxidation experiments. The redispersion of nickel occurred on the silica by repeated oxidation and reduction cycles, and this effect contributed to promoting the castor oil hydrogenation activity.
- Liu SY, Zhu QQ, Guan QX, He LN, Li W, Bioresour. Technol., 183, 93 (2015)
- Schneider RCS, Baldissarelli VZ, Martinelli M, von Holleben MLA, Caramao EB, J. Chromatogr. A, 985, 313 (2003)
- Ogunniyi DS, Bioresour. Technol., 97(9), 1086 (2006)
- Shrirame HY, Panwar NL, Bamniya BR, Low Carbon Econ., 2, 1 (2011)
- Schneider RCS, Baldissarelli VZ, Trombetta F, Martinelli M, Caramao EB, Anal. Chim. Acta, 505, 223 (2004)
- McArdle S, Leahy JJ, Curtin T, Tanner D, Appl. Catal. A: Gen., 474, 78 (2014)
- da Silva MIP, Nery MP, Soto CAT, Mater. Lett., 45, 197 (2000)
- Saraswat SK, Pant KK, J. Nat. Gas Sci. Eng., 13, 52 (2013)
- Atsumi R, Noda R, Takagi H, Vecchione L, Di Carlo A, Del Prete Z, Kuramoto K, Int. J. Hydrog. Energy, 39(26), 13954 (2014)
- Vicente J, Erena J, Montero C, Azkoiti MJ, Bilbao J, Gayubo AG, Int. J. Hydrog. Energy, 39(33), 18820 (2014)
- Dong L, Du Y, Li JM, Wang HY, Yang Y, Li S, Tan ZY, Int. J. Hydrog. Energy, 40(31), 9670 (2015)
- Jia Z, Zhen B, Han M, Wang C, Catal. Commun., 73, 80 (2016)
- Ruckenstein E, Lee SH, J. Catal., 86, 457 (1984)
- Mette K, Kuhl S, Tarasov A, Dudder H, Kahler K, Muhler M, Schlogl R, Behrens M, Catal. Today, 242, 101 (2015)
- Gabrovska M, Krstic J, Edreva-Kardjieva R, Stankovic M, Jovanovic D, Appl. Catal. A: Gen., 299, 73 (2006)
- Suh DJ, Chung JS, Lim T, Moon SH, Korean Chem. Eng. Res., 27, 620 (1989)
- Potoczna-Petru D, Jablonski JM, Okal J, Krajczyk L, Appl. Catal. A: Gen., 175(1-2), 113 (1998)
- Tang L, Yamaguchi D, Leita B, Sage V, Burke N, Chiang K, Catal. Commun., 59, 166 (2015)
- Okal J, Kubicka H, Appl. Catal. A: Gen., 171(2), 351 (1998)