화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.3, 369-374, June, 2017
과산화수소 정량을 위한 서양고추냉이 과산화효소 대용 아카시아의 활용
Application of Acacia as an Alternative to Horseradish Peroxidase for the Determination of Hydrogen Peroxide
E-mail:
초록
바이오센서를 상업적으로 양산하고자 할 때 제작비의 경제성이 고려되어야 한다. 과산화수소를 정량하기 위한 효소전극 제작 시 필수적으로 사용되는, 서양고추냉이로부터 추출된 과산화효소는 대단히 고가이므로 탄소반죽법에 의한 전극제작의 제한 요인이 된다. 이 문제를 우회하고자 본 실험실에서는 생활주변에서 쉽게 얻을 수 있는 재료로 대체 하기 위하여 아카시아 잎을 효소원으로 사용하여 과산화수소 센서를 제작하고 그것의 전기화학적 특성을 살펴보았다. 일정전압전류법으로 얻어진 10개 이상의 전기화학적 파라미터와 실험적 결과들은 효소전극이 정량적으로 그 기능을 발휘하고 있음을 보여주었다. 이런 사실들은 시판 과산화효소가 아카시아 잎으로 대체될 수 있음을 보여주는 것이다.
The curtailment of production cost is important for the mass production of biosensors. Since horseradish peroxidase, which is a key material of enzyme electrodes for hydrogen peroxide analysis is rather expensive, this has been a limiting factor for fabricating carbon paste based enzyme electrodes. In this paper, the acacia leaf tissue as a zymogen easily obtainable in our living environment was used as an alternative to horseradish peroxidase for developing a hydrogen peroxide sensor and the electrochemical properties were evaluated. Ten or more electrochemical parameters alongside the other experimental results acquired by the potentiostatic method demonstrated that our enzyme electrodes can be used for the quantitative analysis of hydrogen peroxide. This also indicates that acacia leaves can take the place of the marketed peroxidase.
  1. Ling Y, Zhang N, Qu F, Wen T, Gao ZF, Li NB, Luo HQ, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 118, 315 (2014)
  2. Hu AL, Liu YH, Deng HH, Hong GL, Liu AL, Lin XH, Xia HH, Chen W, Biosens. Bioelectron., 61, 374 (2014)
  3. Zhao C, Jiang ZW, Mu RZ, Li YF, Talanta, 159, 365 (2016)
  4. Zhang LJ, Chen WC, Zhang ZM, Lu C, Sens. Actuators B-Chem., 193, 752 (2014)
  5. Yu DL, Wang P, Zhao YJ, Fan AP, Talanta, 146, 655 (2016)
  6. Iranifam M, Hendekhale NR, Sens. Actuators B-Chem., 243, 532 (2017)
  7. Passos MLC, Ribeiro DSM, Santos JLM, Saraiva MLMFS, Enzyme Microb. Technol., 90, 76 (2016)
  8. Zhang DD, Ouyang XY, Li LZ, Dai BL, Zhang YM, J. Electroanal. Chem., 780, 60 (2016)
  9. Yang X, Ouyang YJ, Wu F, Hu YJ, Zhang HF, Wu ZY, J. Electroanal. Chem., 777, 85 (2016)
  10. Loaiza OA, Lamas-Ardisana PJ, Anorga L, Jubete E, Ruiz V, Borghei M, Cabanero G, Grande HJ, Bioelectrochemistry, 101, 58 (2015)
  11. Bai JL, Zhang XY, Peng Y, Hong XD, Liu YY, Jiang SY, Ning BA, Gao ZX, Sens. Actuators B-Chem., 238, 420 (2017)
  12. Thenmozhi K, Narayanan SS, Mater. Sci. Eng. C, 70, 223 (2017)
  13. Chen CX, Hong XZ, Xu TT, Chen AK, Lu L, Gao YH, Synth. Met., 212, 123 (2016)
  14. Tekbasoglu TY, Soganici T, Ak M, Koca A, Sener MK, Biosens. Bioelectron., 87, 81 (2017)
  15. Khan AY, Noronha SB, Bandyopadhyaya R, Adv. Powder Technol., 27(1), 85 (2016)
  16. Anojcic J, Guzsvany V, Vajdle O, Madarasz D, Sens. Actuators B-Chem., 233, 83 (2016)
  17. Yoon KJ, Anal. Sci. Technol., 23, 505 (2010)
  18. Dho HS, Yoon KJ, J. Ind. Eng. Chem., 17(2), 254 (2011)
  19. Brydson JA, Rubbery Materials and Their Compounds, 289-295, Elsevier Applied Science, London, UK (1988).
  20. Mansouri A, Makris DP, Keflas P, J. Pharm. Biomed. Anal., 39, 22 (2005)
  21. Yoon KJ, Appl. Chem. Eng., 26(5), 624 (2015)
  22. Rhyu KB, Appl. Chem. Eng., 25(1), 107 (2014)