- Previous Article
- Next Article
- Table of Contents
Clean Technology, Vol.23, No.2, 121-132, June, 2017
수소생산 기술동향
Technical Trends of Hydrogen Production
E-mail:
초록
온실가스 배출과 지구온난화 문제로 인하여 화석연료를 대체할 수 있는 신재생에너지 개발 및 확산의 필요성이 증가하고 있는데, 청정에너지원인 수소가 주목을 받고 있다. 수소는 지구상에서 가장 많이 존재하는 원소이며, 화석연료, 바이오매스 및 물 등 다양한 형태로 존재한다. 수소를 연료로 사용하기 위해서는 경제적인 방법뿐만 아니라 환경에 미치는 영향을 최소화하는 방법으로 생산하는 것이 중요하다. 수소생산방법에는 전통적 방법인 화석연료 개질반응을 통한 생산과 재생가능한 방법인 바이오매스 및 물을 이용한 생산으로 나뉜다. 화석연료를 이용한 수소생산은 습윤개질반응, 자열개질반응, 부분산화반응 및 가스화반응 등 열화학적 방법으로 가능한데, 이를 청정에너지원으로서 사용하기 위해서는 수소생산과 더불어 이산화탄소 포집이 필요하다. 바이오매스를 이용한 수소생산은 그 양이 매우 미미한 수준이며, 특히 생물학적 전환법은 효율 증가를 위한 반응기 구성, 수소생산미생물 배양 등 효과적으로 수소를 생산하기 위한 연구가 더욱 진행되어야 한다. 물분해를 통한 수소생산이 가장 청정한 수소생산기술이지만 태양광, 태양열, 풍력 등 재생 가능한 에너지원으로부터 충분한 에너지공급이 가능해야 한다.
The increase of greenhouse gases and the concern of global warming instigate the development and spread of renewable energy and hydrogen is considered one of the clean energy sources. Hydrogen is one of the most elements in the earth and exist in the form of fossil fuel, biomass and water. In order to use hydrogen for a clean energy source, the hydrogen production method should be eco-friendly and economic as well. There are two different hydrogen production methods: conventional thermal method using fossil fuel and renewable method using biomass and water. Steam reforming, autothermal reforming, partial oxidation, and gasification (using solid fuel) have been considered for hydrogen production from fossil fuel. When using fossil fuel, carbon dioxide should be separated from hydrogen and captured to be accepted as a clean energy. The amount of hydrogen from biomass is insignificant. In order to occupy noticeable portion in hydrogen industries, biomass conversion, especially, biological method should be sufficiently improved in a process efficiency and a microorganism cultivation. Electrolysis is a mature technology and hydrogen from water is considered the most eco-friendly method in terms of clean energy when the electric power is from renewable sources such as photovoltaic cell, solar heat, and wind power etc.
- International Energy Agency (IEA), “Energy Technology Perspectives 2015,” Paris, (2015).
- Hadjipaschalis I, Poullikkas A, Efthimiou V, Renew. Sust. Energ. Rev., 13(6-7), 1513 (2009)
- Balat M, Int. J. Hydrog. Energy, 33(15), 4013 (2008)
- Demirbas A, Dincer K, Energy Sources Part A-Recovery Util. Environ. Eff., 30(13), 1233 (2008)
- McDowall W, Eames M, Energy Policy, 34(11), 1236 (2006)
- Zhang J, Fisher TS, Ramachandran PV, Gore JP, Mudawar I, J. Heat Transf. -Trans. ASME, 127(12), 1391 (2005)
- Aceves SM, Espinosa-Loza F, Ledesma-Orozco E, Ross TO, Weisberg AH, Brunner TC, Kircher O, Int. J. Hydrog. Energy, 35(3), 1219 (2010)
- Sakintuna B, Lamari-Darkrim F, Hirscher M, Int. J. Hydrog. Energy, 32(9), 1121 (2007)
- Elshout R, Chem. Eng., 117(5), 34 (2010)
- Voldsund M, Jordal K, Anantharaman R, Int. J. Hydrog. Energy, 41(9), 4969 (2016)
- Nikolaidis P, Poullikkas A, Renew. Sust. Energ. Rev., 67, 597 (2017)
- Ashik UPM, Wan Daud WMA, Abbas HF, Renew. Sust. Energ. Rev., 44, 221 (2015)
- Basile A, Paola LD, Hai FI, Piemonte V, Woodhead Publishing, Cambridge, 31-59 (2015).
- Ahmed K, Foger K, Catal. Today, 63(2-4), 479 (2000)
- Rostrup-Nielsen JR,“Catalyst Steam Reforming,” Springer Berlin Heidelberg, Berlin, 30-73 (1984)
- Castro Luna AE, Becerra AM, React. Kinet. Catal. Lett., 61(2), 369 (1997)
- Wei J, Iglesia E, J. Phys. Chem., 108(13), 4094 (2004)
- Castro Luna AE, Becerra AM, Dimitrijewits MI, React. Kinet. Catal. Lett., 67(2), 247 (1999)
- Jeong JH, Lee JW, Seo DJ, Seo Y, Yoon WL, Lee DK, Kim DH, Appl. Catal. A: Gen., 302(2), 151 (2006)
- Li DL, Nakagawa Y, Tomishige K, Appl. Catal. A: Gen., 408(1-2), 1 (2011)
- Ritter JA, Ebner AD, Sep. Sci. Technol., 46(6), 1123 (2007)
- Vernon PDF, Green MLH, Cheetham AK, Ashcroft AT, Catal. Lett., 6(2), 181 (1990)
- Liu K, Song C, Subramani V, “Hydrogen and Syngas Production and Purification Technology,” A John Wiley & Sons, Inc., New Jersey, 127-155 (2010).
- Palma V, Ricca A, Addeo B, Rea M, Paolillo G, Ciambelli P, Int. J. Hydrog. Energy, 42(3), 1579 (2017)
- Park JW, Lee SW, Lee CB, Park JS, Lee DW, Kim SH, Kim SS, Ryi SK, J. Power Sources, 247, 280 (2014)
- Flamos A, Geogallis PG, Doukas H, Psarras J, Int. J. Green. Energy, 8(4), 411 (2011)
- Doranehgard MH, Samadyar H, Mesbah M, Haratipour P, Samiezad, S, Fuel, 202, 29 (2017)
- Iribarren D, Susmozas A, Petrakopoulou F, Dufour J, J. Clean Prod., 69, 165 (2014)
- Vasconcelos EAF, Leitao RC, Santaella ST, Bioenergy Res., 9(4), 1260 (2016)
- Rahman SNA, Masdar MS, Rosli MI, Majlan EH, Husaini T, Kamarudin SK, Daud WRW, Renew. Sust. Energ. Rev., 6, 137 (2016)
- Rossmeisl J, Logadottir A, Norskov JK, Chem. Phys., 319(1-3), 178 (2005)
- Abanades S, Charvin P, Lemont F, Flamant G, Int. J. Hydrog. Energy, 33(21), 7568 (2008)
- Zamfirescu C, Naterer GF, Dincer I, Int. J. Energy Res., 37(10), 1175 (2013)
- Moon DK, Lee DG, Lee CH, Appl. Energy, 183, 760 (2016)
- Wiheeb AD, Helwani Z, Kim J, Othman MR, Sep. Purif. Rev., 45(2), 108 (2016)
- Golmakani A, Fatemi S, Tamnanloo J, Sep. Purif. Technol., 176, 73 (2017)
- Ribeiro RPPL, Grande CA, Rodrigues AE, Sep. Sci. Technol., 49(13), 1985 (2014)
- Sailagyi PA, Westerwaal RJ, Lansink M, van Montfort HI, Trzesniewski BJ, Garcia MV, Geerlings H, Dam B, RCS Adv., 5, 89323 (2015)
- Uemiya S, Kajiwara M, Kojima T, AIChE J., 43(11), 2715 (1997)
- Nair BN, Yamaguchi T, Okubo T, Suematsu H, Keizer K, Nakao SI, J. Membr. Sci., 135(2), 237 (1997)
- Ryi SK, NICE, 32(2), 188 (2014)
- Ward TL, Dao T, J. Membr. Sci., 153(2), 211 (1999)
- Phair JW, Badwal SPS, Ionics, 12(2), 103 (2006)
- Balachandran U, Lee TH, Chen L, Song SJ, Picciolo JJ, Dorris SE, Fuel, 85(2), 150 (2006)
- Balachandran U, Lee TH, Dorris SE, Int. J. Hydrog. Energy, 32(4), 451 (2007)
- Uemiya S, Sep. Purif. Methods, 28(1), 51 (1999)
- Conde JJ, Marono M, Sanchez-Hervas JM, Sep. Purif. Rev., 46, 152 (2017)
- Plazaola AA, Tanaka DAP, AM VS, Gallucci F, Molecules, 22, 1 (2017)
- Li H, Caravella A, Xu HY, J. Mater. Chem. A, 4, 14069 (2016)